## PART B

## B.SC. COMPUTER SCIENCE COMPLEMENTARY ELECTIVE COURSES

[FOR B.SC.MATHEMATICS/B.SC.STATISTICS/B.SC.PHYSICS/B.SC.

## ELECTRONICS PROGRAMMES]

## WORK AND CREDIT DISTRIBUTION

(2019 ADMISSION ONWARDS)

| COURSE <br> CODE | COURSE TITLE | SEMESTER | HOURS <br> PER <br> WEEK | CREDIT | EXAM <br> HOURS | MARKS <br> (INTERNAL <br> EXTERNAL) |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 1C01CSC | INTRODUCTION TO <br> COMPUTERS AND <br> PROGRAMMING | 1 | 2 | 2 | 3 | $8+32$ |
| 1 C01CSC | LAB 1: PROGRAMMING IN C, <br> WEB PROGRAMMING AND <br> PYTHON PROGRAMMING | 1 | 2 | 0 | - | - |
| 2C02CSC | PROGRAMMING IN C | 2 | 2 | 2 | 3 | $8+32$ |
| 2C02CSC | LAB 1: PROGRAMMING IN C, <br> WEB PROGRAMMING AND <br> PYTHON PROGRAMMING | 2 | 2 | 0 | - | - |
| $3 C 03 C S C$ | WEB TECHNOLOGY WITH <br> DATA BASE MANAGEMENT <br> SYSTEM | 3 | 3 | 2 | 3 | $8+32$ |
| 3C03CSC | LAB 1: PROGRAMMING IN C, <br> WEB PROGRAMMING AND <br> PYTHON PROGRAMMING | 3 | 2 | 0 | - | - |
| 4C04CSC | COMPUTATION USING <br> PYTHON | 4 | 3 | 2 | 3 | $8+32$ |
| 4C05CSC | LAB 1: PROGRAMMING IN C, <br> WEB PROGRAMMING AND <br> PYTHON PROGRAMMING* | 4 | 2 | 4 | 3 | $8+32$ |

TOTAL 200 MARKS

- PRACTICAL DONE IN ALL THE 4 SEMESTER


## EVALUATION

| ASSESSMENT | WEIGHTAGE |
| :---: | :---: |
| EXTERNAL | 4 |
| INTERNAL | 1 |

## CONTINUOUS EVALUATION FOR THEORY

\(\left.$$
\begin{array}{|c|c|c|}\hline \text { COMPONENT } & \text { WEIGHTAGE } & \text { REMARKS } \\
\hline & & \text { MINIMUM OF 2 TESTS SHOULD BE } \\
\text { COMPONENT1: } & 75 \% & \begin{array}{c}\text { CONDUCTED. MARKS FOR THE TEST } \\
\text { TEST }\end{array}
$$ <br>
\& \& COMPONENT SHOULD BE <br>
THE BEST TWO MAR MKS OBTAINED IN <br>

THE TESTS CONDUCTED.\end{array}\right]\)| COMPONENT 2: |
| :---: |
| ASSIGNMENT/ |
| SEMINAR/VIVA |

PATTERN OF QUESTION PAPER FOR END SEMESTER EVALUATION

| Part A | Short Answer | 5 Questions x 1 Mark = 5 Marks |
| :---: | :---: | :---: |
|  | Answer all questions | 5 Questions x 1 Mark = 5 Marks |
| Part B | Short Essay | 6 Questions x 2 Marks = 12 Marks |
|  | Answer any 4 questions | 4 Questions x 2 Marks = 8 Marks |
| Part C | Essay | 5 Questions x 3 Marks = 15 Marks |
|  | Answer any 3 questions | 3 Questions x 3 Marks = 9 Marks |
| Part D | Long Essay |  |
|  | Answer any 2 questions | 4 Questions x 5 Marks = 20 Marks |
| Total Marks Including Choice: 52 |  |  |
| Maximum Marks for the Course: 32 |  |  |

CONTINUOUS EVALUATION FOR PRACTICAL

| COMPONENT | WEIGHTAGE | REMARKS |
| :---: | :---: | :---: |
| COMPONENT 1: | 25\% FOR LAB |  |
| LKAB SKILLS, | SKILL | OBSERVATION NOTE IS MANDATORY. |
| OBSERVATION | OBS FOR | MARKS SHOULD BE GIVEN |
| NOTE AND | MSRVATION | CONSIDERING OBSERVATION NOTE |
| PUNCTUALITY | NOTE AND | LAB SKILLS AND PUNCTUALITY. |
|  |  |  |
| PUNCTUALITY |  |  |
| COMPONENT1: | $50 \%$ | MODEL EXAMINATION SHOULD BE |
| TEST |  | EXADUCTED BEFORE EXTERNAL |
|  |  | INTERNAL MARK FOR |

END SEMESTER EVALUATION FOR PRACTICAL

| COMPONENT | PART A | PART B |
| :--- | :---: | :---: |
| Code Writing | 7 | 7 |
| Execution \& Output | 8 | 8 |
| Record | 2 |  |
| Total Marks | $\mathbf{3 2}$ |  |

## COMPLEMENTARY ELECTIVE COURSE I: INTRODUCTION TO

 COMPUTERS AND PROGRAMMING| SEMESTER | COURSE CODE | HOURS <br> PER WEEK | CREDIT | EXAM <br> HRS |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{1 C 0 1 C S C}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{3}$ |

## COURSE OUTCOME

CO1: Familiarize with the hardware components of a digital computer
CO2: Understand the basic idea of how data is represented in computers
CO3: Familiarize with types of software
CO4: Ability to design algorithmic solutions to problems

## Unit I: Introduction to Computers

Characteristics of Computers, Computer System Hardware, Basic Concepts of CPU, ALU, Registers, Control Unit and System Bus, Components Inside a Computer Cabinet (Motherboard, BIOS, CMOS Chip, Ports and Interfaces, Expansion Slots, Memory Chips, Storage Devices, Processor - Basic functions), Computer Memory Representation, Memory Hierarchy, Basic Concepts of Cache Memory, Primary Memory (RAM and ROM), Secondary Memory Types (Working principle is not required).
(10 Hrs)

## Unit II: Number System and Codes

Decimal, Binary, Hexa-Decimal and Octal Number Systems, Conversion Between Number Systems, Binary Arithmetic, Complements of Binary Numbers (1's Complement and 2's Complement), Signed Numbers, Floating Point Numbers, Binary Coded Decimal (8421 BCD Code, Applications, BCD Addition), Gray Code, ASCII Code, Unicode
( 8 Hrs )

## Unit III: Types of Software and Networking

System Software, Operating System (Functions of Operating Systems), Application Software, Software Acquisition (Retail, OEM, Demo, Shareware, Freeware, Open-Source Software), Computer Networks (Importance, Types of Networks - LAN, MAN, WAN).
(8 Hrs)

## Unit IV: Introduction to Programming

Types of Computer Languages (Machine Language, Assembly Language, High-level Language), Basic Concepts of Compiler, Assembler, Interpreter, Linker and Loader.

Program Development Life Cycle, Algorithm, Flowcharts, Program Control Structures (Sequential, Selection, Loop), Programming Paradigms (Structured Programming, Basic Idea of Object-Oriented Programming), Characteristics of a Good Program
(10 Hrs)

## Books for Study:

1. Anita Goel, Computer Fundamentals, Pearson
2. Thomas L. Floyd, Digital Fundamentals, $11^{\text {th }}$ Edition, Pearson

## Books for Reference:

1. Rajaraman V and Adabala N, Fundementals of Computers, PHI
2. Brian W Kernighan, D is for Digital: What a well-informed person should know about computers and communications, CreateSpace Independent Publishing Platform
3. Stewart Venit and Elizabeth Drake, Prelude to Programming (6th Edition), Pearson

## Marks including choice:

| Unit | Marks |
| :---: | :---: |
| I | 17 |
| II | 13 |
| III | 9 |
| IV | 13 |


| SEMESTER | COURSE CODE | HOURS <br> PER WEEK | CREDIT | EXAM <br> HRS |
| :---: | :---: | :---: | :---: | :---: |
| 2 | $2 C 02 C S C$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{3}$ |

COURSE OUTCOME
CO1: Understand the building blocks of C programming language
CO2: Familiarize with program control structures in C
CO3: Learn procedural programming using functions
CO4: Understand user defined data types

## Unit I: Introduction to C

C Character Set, Constants, Variables, Keywords, Instructions in C (Type Declaration, Arithmetic, Integer and Float Conversions), Operators in C (Arithmetic, Relational, Logical, Increment/Decrement, Assignment, Bitwise), Operator Precedence, Data Types (int, char, float, double, void), Compiling and Running C Programs in Linux.

## Unit II: Inputs and Control Statements

Formatted Console I/O Functions (printf, scanf), Escape Sequences, Unformatted Console I/O Functions (getch, putch, gets, puts), Decision control structures (Different forms of if statement), Conditional Operator, Case Control Structure (switch), Loop control structure (while, do-while, for), break and continue statements.
( 10 Hrs )

## Unit III: Functions and Pointers

User defined Functions (Advantages, Definition, Calling and Prototype), Library Functions, Pointers (Introduction to Pointers, Pointer Notation, Pointer Declaration and Initialization, Accessing Variable through Pointer), Call by Value and Call by Reference, Recursion
(10 Hrs)

## Unit IV: Arrays, Strings and Structures

Arrays (Introduction, One Dimensional Arrays, Two Dimensional Arrays), Strings, Standard Library String Functions (strlen, strcpy, strcat, strcmp), Two-Dimensional Array of Characters. Storage Classes in C, Structures (Declaration, Initialization,

Accessing Structure Elements), Array of Structures, Array Within Structure, Renaming Data Types with Typedef, C Preprocessors (\#define, \#include).
(9 Hrs)

## Books for Study:

1. Yashavant P. Kanetkar, Let Us C, $16^{\text {th }}$ Edition, BPB

## Books for Reference:

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall of India
2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill
3. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill Marks including choice:

| Unit | Marks |
| :---: | :---: |
| I | 10 |
| II | 16 |
| III | 16 |
| IV | 10 |

COMPLEMENTARY ELECTIVE COURSE III: WEB TECHNOLOGY WITH DATABASE MANAGEMENT SYSTEM

| SEMESTER | COURSE CODE | HOURS <br> PER WEEK | CREDIT | EXAM <br> HRS |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3}$ | 3C03CSC | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ |

## COURSE OUTCOME

CO1: Develop skills to design a web page using HTML
CO2: Understand HTML Forms and CSS Styling
CO3: Develop skills to develop database and retrieve data using SQL
CO4: Learn basics of server-side programming with PHP

## Unit I:HTML Basics

Introduction to WWW and HTML, Steps for hosting a website, Structure of HTML, HTML elements and attributes, Headings, Paragraphs, Formatting tags, line breaks, Comments, Links, Images, Lists, HTML5 Semantic Elements (header, footer, nav, section, article, nav, aside), HTML Tables.
(14 Hrs)

## Unit II:HTML Forms and CSS

HTML Forms (input, select, textarea, button, datalist), Input types (text, password, submit, radio, checkbox, date, email), Input attributes (value, readonly, disabled, maxlength, autocomplete, list, min, max, placeholder), HTML5 form validation (required and pattern attribute of input type), Applying style to html using CSS (Inline, Internal and External CSS, Colors, Fonts, Borders, Padding, Applying style using class and id attribute)

## (12 Hrs)

## Unit III: Database Management System

Database Management System (Introduction, Simplified DBMS structure, advantages of DBMS, Database Administrators, Designers, End Users, System Analysts and Application Programmers), Relational Data Model (Domains, Attributes, Tuples, Relations), Relational Data Model Constraints (Domain Constraints, Key Constraints) SQL Data Definition and Basic Data Types, Schema, DDL Statements (Create, Alter, Drop), Specifying Key Constraints in SQL, DML (Select, Insert, Update, Delete),

Ordering Tuples, Renaming Attributes, Substring Pattern Matching and Arithmetic Operators, Aggregate Functions in SQL, Group By and Having, Joins (Inner and Outer)
(18 Hrs)

## Unit IV: Introduction to PHP

Introduction to PHP, PHP basics (Variable, data types, Constants, Operators), Flow control (if, switch, while, for), Functions, Strings, Arrays, Form Handling (GET and POST methods), Connecting php to a database.
(10 Hrs)

## Books for Study:

1. Julie C. Meloni, HTML and CSS in 24 Hours, Sams Teach Yourself (Updated for HTML5 and CSS3), Ninth Edition
2. RamezElmasri, Shamkant B. Navathe, Fundamentals of Database Systems, 7th Edition, Pearson
3. https://www.w3schools.com/php/

## Books for Reference:

1. Powell, Thomas A. HTML \& CSS: The Complete Reference. McGraw Hill Education; 5 edition.
2. Silberschatz, Abraham, Henry
F. Korth, and ShashankSudarshan. Database system concepts. McGraw-Hill.
3. PHP: The Complete Reference, Steven Holzner, McGraw Hill Education
4. https://www.w3schools.com/css/
5. https://www.w3schools.com/html/

## Marks including choice:

| Unit | Marks |
| :---: | :---: |
| I | 12 |
| II | 12 |
| III | 20 |
| IV | 8 |

COMPLEMENTARY ELECTIVE COURSE IV: COMPUTATION USING PYTHON

| SEMESTER | COURSE CODE | HOURS <br> PER WEEK | CREDIT | EXAM <br> HRS |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{4}$ | $4 \mathrm{C04CSC}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{3}$ |

## COURSE OUTCOME

CO1: Learn Python for expressing computation
CO2: Familiarize with functions and modules in python
CO3: Understand object-oriented programming concepts
CO4: Learn the techniques for data visualization in python

## Unit I: Basic Elements and Control Statements

Features of Python, Different Methods to Run Python, Basic Elements (Objects, Expressions, Numerical Types, Strings, Variables), Comments, Indentation in Python, Input and Output in Python, import function, Operators in Python, Branching (if, else, elif), Iteration (while, for), range and enumerate functions, Tuples, Lists, Sets, Dictionaries, Built-in methods of lists, sets and dictionaries, Mutable and Immutable Objects.
( $\mathbf{1 6} \mathrm{Hrs}$ )

## Unit II: Functions, Modules and Exception Handling

Functions Definition, Function Calling, Function Arguments (Required, Keyword, Default), Recursion, Modules, Built-in Modules (math, statistics), Creating Modules, File Handling (Opening, Closing, Writing, Reading), Exceptions, Built-in Exceptions (IndexError, OverflowError, ZeroDivisionError, RuntimeError), Exception Handling.
( $\mathbf{1 6} \mathrm{Hrs}$ )

## Unit III: Object Oriented Programming

Class Definition, Object Creation, Built-in Attribute Methods, Encapsulation, Data Hiding, Inheritance, Multi-Level Inheritance, Polymorphism (Method Overriding, Operator Overloading)
(10 Hrs)

## Unit IV: Arrays and Data Visualization

Arrays in Python, Numpy Module, ndarray, Creating Arrays (array, zeros, ones, empty, linspace, arrange, random), Two-Dimensional Array, Indexing, Slicing, Iterating,

Copying, Splitting, Shape Manipulation (reshape, transpose, resize), Arithmetic Operations on Arrays.

Data Visualization in Python (matplotlib Module, pyplot, plot(), hist, scatter, bar charts, Formatting, figure(), subplot(), text(), xlabel(), ylabel(), title(), Plotting Simple Mathematical Functions $\left(\sin x, x^{2}\right)$
(12 Hrs)

## Books for Study:

1. Taming Python By Programming, Dr. Jeeva Jose, Khanna Publishing
2. Introduction to Computation and Programming Using Python with Application to Understanding Data - John V. Guttag, PHI (2016)
3. https://www.numpy.org/devdocs/user/quickstart.html
4. https://matplotlib.org/users/pyplot_tutorial.html

## Books for Reference:

1. https://www.tutorialspoint.com/python/
2. Introduction to Computer Science using Python - Charles Dierbach, Wiley (2015)
3. Python for Education by Ajith Kumar B P
4. https://docs.python.org/3/tutorial/index.html
5. Introduction to Computer Science and Programming Using Python Provided by Massachusetts Institute of Technology (MITx) - Available at : (https://www.edx.org/course/introduction-to-computer-science-and-programming-using-python-2)

## Marks including choice:

| Unit | Marks |
| :---: | :---: |
| 1 | 15 |
| 2 | 15 |
| 3 | 10 |
| 4 | 12 |

## COMPLEMENTARY ELECTIVE COURSE V: LAB 1 - PROGRAMMING IN C,

 WEB PROGRAMMING AND PYTHON PROGRAMMING| SEMESTER | COURSE CODE | HOURS <br> PER WEEK | CREDIT | EXAM <br> HRS |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{4}$ | $\mathbf{4 C 0 5 C S C}$ | $\mathbf{2}^{*}$ | $\mathbf{4}$ | $\mathbf{3}$ |

*Lab will be conducted for 2 hours each in I, II, III and IV semesters

## COURSE OUTCOME

CO1: Achieve skills to use C language for problem solving
CO2: Understand SQL and basic web programming
CO3: Achieve skills to use Python for problem solving

## Part I: C Programming

1. Write a program to receive an angle in degrees and check whether sum of the squares of sines and cosines of the angle is equal to 1 . (Hint: Convert the angle in degrees to radians and apply mathematical functions).
2. Write a C program to check whether a year entered through the keyboard is leap year or not.
3. Write a program to reverse the digits of a positive integer number up to 5 digits. Display an error message if any other number is entered.
4. Write a program to enter numbers till the user wants. At the end, it should display the count of positive, negative and zeros entered.
5. Given the value of $n$, write a program to generate $n$ Fibonacci numbers.
6. Create a menu driven calculator using switch statement. The menu should contain options for Addition, Subtraction, Multiplication, Division and Exit. The program should end only when the user enters the choice as Exit.
7. Create function which takes an integer value as parameter and returns 1 if the number is prime and 0 otherwise. Write a program which uses this function to generate first 100 prime numbers.
8. Write a program using recursion to find the factorial of a number.
9. Write a program to sort n numbers in ascending/descending order.
10. Write a program to check whether a string is palindrome or not.
11. Write a program to add two matrices. Display an error message if the matrices cannot be added due to incompatibility.
12. Create a structure student with membersroll_no, name and year_of_admn. Write a program to read n students into an array of the structure student. Write a function which takes year as argument and displays the names of students who joined that year. Get an input year from the user and display the student list using this function. (Hint: Make student array and number of students as global variables).

## Part II: DBMS and Web Programming

To be updated

## Part II: Python Programming

To be updated

