DON BOSCO ARTS \& SCIENCE COLLEGE ANGADIKADAVU
 (Affiliated to Kannur University Approved by Government of Kerala)
 ANGADIKADAVU P.O., IRITTY, KANNUR - 670706

COURSE PLAN

BSC MATHEMATICS

(2019-22)

SEMESTER - VI

ACADEMIC YEAR - (2021-22)

VI Semester BSC MATHEMATICS (2019-22)			
SL. No.	Name of Subjects with Code	Name of the Teacher	Duty Hours per week
1.	6B10 MAT Real Analysis II	Anil M V	6
2.	6B11 MAT Complex Analysis	Ajeena Joseph	6
3.	6B12 MAT Numerical Methods, Fourier Series and Partial Differential Equations	Athulya P	6
4.	6B13 MAT Linear Algebra	Prija V	6
5.	6B14B MAT Operations Research	Riya Baby+Ajeena Joseph+Prija V.	6
	Name of Class Incharge	Riya Baby	

TIME TABLE

Day	$\begin{gathered} \hline \text { 09.50 Am - } \\ 10.45 \mathrm{Am} \end{gathered}$	$\begin{gathered} 10.45 \mathrm{Am}-11.40 \\ \mathrm{Am} \end{gathered}$	$\begin{gathered} 11.55 \mathrm{Am}-12.50 \\ \mathrm{Pm} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 01.40 Pm - } \\ \text { 02.35 Pm } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 02.35 Pm - } \\ \text { 03.30 Pm } \end{gathered}$
1	6B14B MAT Operations Research	6B12 MAT Numerical Methods, Fourier Series and Partial Differential Equations	6B13 MAT Linear Algebra	6B10 MAT Real Analysis II	6B11 MAT Complex Analysis
2	6B12 MAT Numerical Methods, Fourier Series and Partial Differential Equations	6B11 MAT Complex Analysis	6B10 MAT Real Analysis II	6B14B MAT Operations Research	6B13 MAT Linear Algebra
3	6B11 MAT Complex Analysis	6B10 MAT Real Analysis II	6B12 MAT Numerical Methods,Fourier Series and Partial Differential Equations	6B13 MAT Linear Algebra	6B14B MAT Operations Research

4	6B10 MAT Real Analysis II	6B13 MAT Linear Algebra	6B11 MAT Complex Analysis	6B14B MAT Operations Research	6B12 MAT Numerical Methods, Fourier Series and Partial Differential Equations
5	6B13 MAT Linear Algebra	6B14B MAT Operations Research	6B11 MAT Complex Analysis	6B12 MAT Numerical Methods, Fourier Series and Partial Differential Equations	6B10 MAT Real Analysis II
6	6B14B MAT Operations Research	6B13 MAT Linear Algebra	6B10 MAT Real Analysis II	6B11 MAT Complex Analysis	6B12 MAT Numerical Methods, Fourier Series and Partial Differential Equations

Subject Code:	6B10 MAT
Subject Name:	Real Analysis II
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Anil M V

6B10 MAT Real Analysis II

Unit I - Uniform continuity and Monotone functions (20 hours)

Uniform Continuity, Monotone and Inverse Functions (Sections 5.4, 5.6 of Text 1).

Unit II - Riemann Integral ($\mathbf{2 5}$ hours)

Riemann Integral, Riemann Integrable functions (proof of Additivity theorem is excluded), The Fundamental Theorem of Calculus (Lebesgue's Integrability Criterion and proof of Composition Theorem are excluded) (Sections 7.1,7.2, 7.3 of Text 1).

Unit III - Improper Integrals and Beta and Gamma Functions (25 hours)
Improper Integrals (Section 8.7 of Text 2).
Beta and Gamma Functions - Definitions, Properties of Beta and Gamma Functions, Transformations of Gamma Function, Some Important Deductions, Duplication formula (Sections 7.1, 7.2, 7.3, 7.4, 7.5 of Text 3).

Unit IV - Sequence and Series of Functions and Metric spaces (20 hours)
Pointwise and Uniform Convergence, Interchange of Limits, Series of Functions (Sections 8.1, 8.2, 9.4 of Text 1).
Metric Spaces - Definition, examples, neighbourhood of a point (Relevant topics from section 11.4 of the Text 1).

Texts

1. R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis (4th edition), Wiley
2. G.B. Thomas Jr., M.D. Weir and J.R. Hass, Thomas’ Calculus (12th edition), Pearson Education
3. S. Narayan and P.K. Mittal, Integral Calculus (11th edition), S. Chand Publishers.

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{gathered} 03-01-2022 \\ \text { To } \\ 08-01-2022 \end{gathered}$	1	Uniform continuity
		2	Basic results
		3	Definition
		4	Examples
		5	Non uniform continuity criteria
		08 January	Second Saturday
2	$\begin{gathered} 10-01-2022 \\ \text { To } \\ 15-01-2022 \end{gathered}$	6	Uniform continuity theorem
		7	Lipschitz functions
		8	Examples, Theorem
		9	The continuous extension theorem
		10	Theorem
		11	Step function
3	$\begin{gathered} 17-01-2022 \\ \text { To } \\ 22-01-2022 \end{gathered}$	12	Theorem, Corollary
		13	Weierstrass approximation theorem
		14	Monotone functions
		15	Theorem, corollary
		16	Theorem
		17	Continuous inverse theorem
4	$\begin{aligned} & 24-01-2022 \\ & \text { To } \\ & \text { 29-01-2022 } \end{aligned}$	18	The nth root function
		19	Theorem
		26 January	Republic Day
		20	Class test
		21	Partitions and Riemann sum
		22	Definition of Riemann integrals
5	$\begin{gathered} 31-01-2022 \\ \text { To } \\ 05-02-2022 \end{gathered}$	31 January	Don Bosco
		23	Theorem
		24	Examples
		25	Properties of the integrals
		26	Boundedness theorem
		27	Riemann integrable functions
6	$\begin{gathered} 07-02-2022 \\ \text { To } \\ 12-02-2022 \end{gathered}$	28	Cauchy criterion
		29	Squeeze theorem
		30	Lemma
		31	Additivity Theorem
		32	The Fundamental theorem of calculus first form

No of Weeks	Dates	Session	Topic
		12 February	Second Saturday
7	$\begin{gathered} 14-02-2022 \\ \text { To } \\ \text { 19-02-2022 } \end{gathered}$	33	Theorem
		34	Definitions
		35	The Fundamental theorem of calculus first form
		36	Substitution theorem
		37	Composition theorem
		38	The Product theorem and Integration by parts
8	$\begin{gathered} 21-02-2022 \\ \text { To } \\ 26-02-2022 \end{gathered}$	39	I Internal Examination
		40	I Internal Examination
		41	I Internal Examination
		42	I Internal Examination
		43	I Internal Examination
		44	I Internal Examination
9	$\begin{gathered} 28-02-2022 \\ \text { To } \\ 05-03-2022 \end{gathered}$	45	Improper integrals
		01 March	Maha Sivarathri
		46	Properties
		47	Examples
		48	Beta and gamma functions
		49	Properties of Beta and gamma functions
10	$\begin{gathered} 07-03-2022 \\ \text { To } \\ \text { 12-03-2022 } \end{gathered}$	50	Evaluation of Gamma function
		51	Transformation of Gamma function
		52	Transformation of beta function
		53	Relation between Beta and Gamma function
		54	Important deductions
		12 March	Second Saturday
11	$\begin{gathered} 14-03-2022 \\ \text { To } \\ 19-03-2022 \end{gathered}$	55	Assignment
		56	Duplication formula
		57	Discussion of exercise questions
		58	Discussion of exercise questions
		59	Discussion of exercise questions
		60	Pointwise convergence
12	$\begin{gathered} 21-03-2022 \\ \text { To } \\ 26-03-2022 \end{gathered}$	61	Examples
		62	Uniform convergence
		63	Examples
		64	Lemma
		65	The uniform norm
		66	Cauchy criterion for uniform convergence
13	28-03-2022	67	Interchange of limit and continuity

No of Weeks	Dates	Session	Topic
	$\begin{gathered} \hline \text { To } \\ 02-04-2022 \end{gathered}$	68	Interchange of limit and derivative
		69	Interchange of limit and integral
		70	Bounded convergence theorem
		71	Dini's theorem
		72	Assignment
14	$\begin{gathered} 04-04-2022 \\ \text { To } \\ 09-04-2022 \end{gathered}$	73	Series of functions
		74	Tests for uniform convergence
		75	Cauchy Hadamard theorem
		76	Differentiation theorem
		77	Uniqueness theorem
		09 April	Second Saturday
15	$\begin{gathered} 11-04-2022 \\ \text { To } \\ 16-04-2022 \end{gathered}$	78	Metric spaces-definition and examples
		79	Neighborhood of a point
		13 April	Easter Holidays
		14 April	Easter Holidays
		15 April	Easter Holidays
		16 April	Easter Holidays
16	$\begin{gathered} 18-04-2022 \\ \text { To } \\ 23-04-2022 \end{gathered}$	18 April	Easter Holidays
		80	Completeness in metric spaces
		81	Exercise question discussion
		82	Class test
		83	Revision
		84	Revision
17	$\begin{gathered} 25-04-2022 \\ \text { To } \\ 30-04-2022 \end{gathered}$	85	II Internal Examination
		86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

Subject Code:	6B11MAT
Subject Name:	Complex Analysis
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Ajeena Joseph

SYLLABUS

Text: E.Kreyzig, Adavnced Engineering Mathematics, $\mathbf{1 0}^{\text {th }}$ edition, John Wiley.

UNIT I: Complex functions and Analyticity

Complex functions, Limit and Continuity, Analytic functions, Cauchy- Reimann equations, Laplace equations, Exponential function, Trigonometric and Hypergeometric functions, Euler's formula, Logarithmic functions, General power, Principal value
(Sections 13.3, 13.4, 13.5, 13.6, 13.7 of Text)

UNIT II: Complex Integration

Line integrals in the complex plane, Cauchy's integral theorem, Cauchy's integral formula, Derivatives of analytic functions.
(Sections 14.1, 14.2, 14.3, 14.4 of Text)

UNIT III: Power Series and Taylor Series

Sequence and series, convergence, Power series, Functions given by power series, Taylor's and Maclaurin series.
(Sections 15.1, 15.2, 15.3, 15.4 of Text)

UNIT IV: Laurent's Series and Residue Integration

Laurent's series, Singularities and zeros, Infinity, Residue Integration method.
(Sections 16.1, 16.2, 16.3 of Text)

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{gathered} 03-01-2022 \\ \text { To } \\ 08-01-2022 \end{gathered}$	1	Complex functions
		2	Examples
		3	Problems
		4	Limit and continuity
		5	Problems
		08 January	Second Saturday
2	$\begin{gathered} 10-01-2022 \\ \text { To } \\ 15-01-2022 \end{gathered}$	6	Differentiability
		7	Problems
		8	Class test
		9	Analytic functions
		10	Examples
		11	Problems
3	$\begin{gathered} 17-01-2022 \\ \text { To } \\ \text { 22-01-2022 } \end{gathered}$	12	Catchy- Reimann equations
		13	Problems
		14	Problems
		15	Exponential function
		16	Problems
		17	Trigonometry functions
4	$\begin{gathered} 24-01-2022 \\ \text { To } \\ \text { 29-01-2022 } \end{gathered}$	18	Class test
		19	Logarithmic functions
		26 January	Republic Day
		20	Problems
		21	Problems
		22	General power
5	$\begin{aligned} & 31-01-2022 \\ & \text { To } \\ & 05-02-2022 \end{aligned}$	31 January	Don Bosco
		23	Principal value
		24	Problems
		25	Assignment
		26	Line integrals
		27	Problems
6	$\begin{gathered} 07-02-2022 \\ \text { To } \\ 12-02-2022 \end{gathered}$	28	Problems
		29	Cauchy's theorem
		30	Class test
		31	Problems
		32	Problems

No of Weeks	Dates	Session	Topic
		12 February	Second Saturday
7	$\begin{gathered} 14-02-2022 \\ \text { To } \\ 19-02-2022 \end{gathered}$	33	Cauchy's Integral formula
		34	Problems
		35	Problems
		36	Derivative of analytic functions
		37	Problems
		38	Problems
8	$\begin{gathered} 21-02-2022 \\ \text { To } \\ 26-02-2022 \end{gathered}$	39	I Internal Examination
		40	I Internal Examination
		41	I Internal Examination
		42	I Internal Examination
		43	I Internal Examination
		44	I Internal Examination
9	$\begin{gathered} 28-02-2022 \\ \text { To } \\ 05-03-2022 \end{gathered}$	45	Examples
		01 March	Maha Sivarathri
		46	Sequence and series of complex functions
		47	Sequence and series of complex functions
		48	Sequence and series of complex functions
		49	Power series
10	$\begin{gathered} 07-03-2022 \\ \text { To } \\ 12-03-2022 \end{gathered}$	50	Examples
		51	Problems
		52	Problems
		53	Assignment
		54	Problems
		12 March	Second Saturday
11	$\begin{gathered} 14-03-2022 \\ \text { To } \\ 19-03-2022 \end{gathered}$	55	Taylor's series
		56	Problems
		57	Problems
		58	Problems
		59	Maclaurin series
		60	Maclaurin series
12	$\begin{gathered} 21-03-2022 \\ \text { To } \\ 26-03-2022 \end{gathered}$	61	Problems
		62	Problems
		63	Problems
		64	Seminar
		65	Seminar
		66	Laurent's series
13	28-03-2022	67	Problems

No of Weeks	Dates	Session	Topic
	$\begin{gathered} \hline \text { To } \\ 02-04-2022 \end{gathered}$	68	Singularity
		69	Class test
		70	Problems
		71	Problems
		72	Zeros at infinity
14	$\begin{aligned} & 04-04-2022 \\ & \text { To } \\ & 09-04-2022 \end{aligned}$	73	Problems
		74	Residues
		75	Class test
		76	Residues
		77	Problems
		09 April	Second Saturday
15	$\begin{gathered} \text { 11-04-2022 } \\ \text { To } \\ 16-04-2022 \end{gathered}$	78	Problems
		79	Integration method
		13 April	Easter Holidays
		14 April	Easter Holidays
		15 April	Easter Holidays
		16 April	Easter Holidays
16	$\begin{gathered} 18-04-2022 \\ \text { To } \\ 23-04-2022 \end{gathered}$	18 April	Easter Holidays
		80	Integration method
		81	Problems
		82	Problems
		83	Revision
		84	Revision
17	$\begin{gathered} 25-04-2022 \\ \text { To } \\ 30-04-2022 \end{gathered}$	85	II Internal Examination
		86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

Subject Code:	6B12 MAT
Subject Name:	Numerical Methods, Fourier Series And Partial Differential Equations
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Athulya P

6B12 MAT:
 Numerical Methods, Fourier series and Partial Differential Equations

Unit I- Interpolation ($\mathbf{2 5}$ Hours)

Interpolation with unevenly spaced points, Langrange interpolation, Newton's divided differences interpolation, Finite difference operators and finite differences, Newton's interpolation formulae, Central difference interpolation. (Sections 4.2, 4.2.1, 4.2.3, 4.3.1, 4.3.2, 4.3.3 of Text 1).

Unit II - Numerical Solution of Differential Equations ($\mathbf{2 5}$ Hours)
Introduction, Picard's method, Solution by Taylor series method, Euler method, Runge-Kutta methods (Sections 7.1, 7.2, 7.3, 7.4, 7.5 of Text 1).

Unit III - Fourier Series (20 Hours)
Fourier Series, Arbitrary period, Even and Odd Functions, Half-Range Expansions, Fourier Integrals (Sections 11.1, 11.2, 11.7 of Text 2).

Unit IV - Partial Differential Equations (20 Hours)

Basic Concepts, Solution by Separating Variables. Use of Fourier Series, D'Alembert's Solution of the Wave Equation. Characteristics, Heat Equation: Solution by Fourier Series (Steady two-dimensional Heat problems, Laplace's equation, unifying power of methods, Electro statistics and Elasticity are excluded), Laplacian in Polar Coordinates (circular membrane, Bessel's equation are excluded). (Sections 12.1, 12.3, 12.4, 12.6, 12.10 of Text 2).

Texts

[^0]
TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{gathered} 03-01-2022 \\ \text { To } \\ 08-01-2022 \end{gathered}$	1	Interpolation : Introduction
		2	Lagrange interpolation
		3	Problems
		4	Problems
		5	Problems
		08 January	Second Saturday
2	$\begin{gathered} 10-01-2022 \\ \text { To } \\ 15-01-2022 \end{gathered}$	6	Newtons divided differences interpolation
		7	Newtons divided differences interpolation
		8	Problems
		9	Problems
		10	Finite difference operators
		11	Finite differences
3	$\begin{gathered} 17-01-2022 \\ \text { To } \\ 22-01-2022 \end{gathered}$	12	Finite differences
		13	Problems
		14	Problems
		15	Problems
		16	Newtons interpolation formula
		17	Newtons interpolation formula
4	$\begin{aligned} & 24-01-2022 \\ & \text { To } \\ & \text { 29-01-2022 } \end{aligned}$	18	Problems
		19	Problems
		26 January	Republic Day
		20	Central difference interpolation
		21	Problems
		22	Problems
5	$\begin{aligned} & 31-01-2022 \\ & \text { To } \\ & 05-02-2022 \end{aligned}$	31 January	Don Bosco
		23	Class Test
		24	Numerical Solution of differential equations: Introduction
		25	Picards method
		26	Picards method
		27	Problems
6	$\begin{gathered} 07-02-2022 \\ \text { To } \\ 12-02-2022 \end{gathered}$	28	Solution by Taylor series method
		29	Problems
		30	Problems
		31	Euler method
		32	Euler method

No of Weeks	Dates	Session	Topic
		12 February	Second Saturday
7	$\begin{gathered} 14-02-2022 \\ \text { To } \\ 19-02-2022 \end{gathered}$	33	Problems
		34	Problems
		35	Runge- Kutta methods
		36	Problems
		37	Problems
		38	Class Test
8	$\begin{gathered} 21-02-2022 \\ \text { To } \\ 26-02-2022 \end{gathered}$	39	I Internal Examination
		40	I Internal Examination
		41	I Internal Examination
		42	I Internal Examination
		43	I Internal Examination
		44	I Internal Examination
9	$\begin{gathered} 28-02-2022 \\ \text { To } \\ 05-03-2022 \end{gathered}$	45	Fourier Series : Introduction
		01 March	Maha Sivarathri
		46	Fourier Series
		47	Arbitrary period
		48	Even and Odd functions
		49	Even and Odd functions
10	$\begin{gathered} 07-03-2022 \\ \text { To } \\ \text { 12-03-2022 } \end{gathered}$	50	Problems
		51	Problems
		52	Problems
		53	Problems
		54	Problems
		12 March	Second Saturday
11	$\begin{gathered} 14-03-2022 \\ \text { To } \\ 19-03-2022 \end{gathered}$	55	Half Range Expansions
		56	Half Range Expansions
		57	Half Range Expansions
		58	Problems
		59	Problems
		60	Problems
12	$\begin{gathered} 21-03-2022 \\ \text { To } \\ 26-03-2022 \end{gathered}$	61	Problems
		62	Fourier Integrals
		63	Problems
		64	Problems
		65	Problems
		66	Class Tests
13	28-03-2022	67	Partial differential equations

No of Weeks	Dates	Session	Topic
	$\begin{gathered} \text { To } \\ 02-04-2022 \end{gathered}$	68	Basic Concepts
	02-04-2022	69	Solution by separating variables
		70	Use of Fourier series
		71	D'Alembert's Solution of the wave equation.
		72	D'Alembert's Solution of the wave equation.
14	$\begin{aligned} & 04-04-2022 \\ & \text { To } \\ & 09-04-2022 \end{aligned}$	73	Problems
		74	Problems
		75	Problems
		76	Characteristics
		77	Heat equation : Solution by Fourier Series
		09 April	Second Saturday
15	$\begin{gathered} 11-04-2022 \\ \text { To } \\ 16-04-2022 \end{gathered}$	78	Heat equation : Solution by Fourier Series
		79	Class Test
		13 April	Easter Holidays
		14 April	Easter Holidays
		15 April	Easter Holidays
		16 April	Easter Holidays
16	$\begin{gathered} 18-04-2022 \\ \text { To } \\ 23-04-2022 \end{gathered}$	18 April	Easter Holidays
		80	Laplacian in polar coordinates
		81	Laplacian in polar coordinates
		82	Problems
		83	Revision
		84	Revision
17	$\begin{gathered} 25-04-2022 \\ \text { To } \\ 30-04-2022 \end{gathered}$	85	II Internal Examination
		86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

Subject Code:	6B13 MAT
Subject Name:	Linear Algebra
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	PRIJA \mathbf{V}

SYLLABUS :

6B13 MAT: Linear Algebra

Unit I - Vector Spaces (20 Hours)

Introduction, Vector spaces, Subspaces, Linear Combinations and Systems of Linear Equations (Sections 1.1, 1.2, 1.3 of Text 1).

Unit II - Bases and Dimension (20 Hours)

Linear Dependence and Linear Independence, Bases and Dimension, Maximal Linearly Independent Subsets (Sections 1.5, 1.6, 1.7 of Text 1).

Unit III - Linear Transformations, Matrices ($\mathbf{2 5}$ Hours)

Linear Transformations, Null Spaces, and Ranges (Proof of Theorem 2.3 excluded), The Matrix Representation of a Linear Transformation (Sections 2.1, 2.2 of Text 1) (Operations of Linear Transformations and related theorems are excluded). Introduction, Rank of a matrix, Elementary transformations of a matrix, Invariance of rank through elementary transformations, Elementary transformations of a matrix do not alter its rank, Multiplication of the elements of a row by a non zero number does not alter the rank, Addition to the elements of a row the products by a number of the corresponding elements of a row does not alter the rank, Reduction to normal form (Proof of theorem excluded), Elementary Matrices, Elementary Transformations and elementary matrices, Employment of only row (column) transformations, The rank of a product, A Convenient method for computing the inverse of a non singular matrix by elementary row transformations (Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 of Text 2).

Unit IV - System of linear equations, Eigen values and Eigen vectors (25 Hours) Introduction, System of linear homogeneous equations, Null space and nullity of matrix, Sylvester's law of nullity, Range of a matrix, Systems of linear non homogeneous equations (Sections 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 of Text 2) Eigen values, eigen vectors, Properties of eigen values, CayleyHamilton theorem(without proof). (Sections 2.13, 2.14, 2.15 of Text 3)

Texts

1. S.H. Friedberg, A. J. Insel and L.E. Spence, Linear Algebra (4th edition), PH Inc
2. S. Narayan and Mittal, A Text Book of Matrices (Revised edition), S. Chand

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{gathered} 03-01-2022 \\ \text { To } \\ 08-01-2022 \end{gathered}$	1	Unit I - Vector Spaces -Introduction.
		2	Vector spaces, Definitions.
		3	Examples, Exercise questions.
		4	Theorem.
		5	Subspaces, Definitions.
		08 January	Second Saturday
2	$\begin{gathered} 10-01-2022 \\ \text { To } \\ 15-01-2022 \end{gathered}$	6	Examples, Exercise questions.
		7	Theorem.
		8	Theorem.
		9	Class test.
		10	Exercise questions.
		11	Linear Combinations and Systems of Linear Equations.
3	$\begin{gathered} 17-01-2022 \\ \text { To } \\ 22-01-2022 \end{gathered}$	12	Definitions.
		13	Examples, Exercise questions.
		14	Theorem.
		15	Theorem.
		16	Unit Test.
		17	Unit II - Bases and Dimension - Introduction.
4	$\begin{gathered} 24-01-2022 \\ \text { To } \\ 29-01-2022 \end{gathered}$	18	Examples, Exercise questions.
		19	Theorem.
		26 January	Republic Day
		20	Linear Dependence and Linear IndependenceDefinitions.
		21	Examples, Exercise questions.
		22	Theorem.
5	$\begin{gathered} 31-01-2022 \\ \text { To } \\ 05-02-2022 \end{gathered}$	31 January	Don Bosco
		23	Bases and Dimension- Definitions.
		24	Class test.
		25	Examples, Exercise questions.
		26	Theorem.
		27	Maximal Linearly Independent Subsets
6	07-02-2022	28	Definitions.
		29	Examples, Exercise questions.

No of Weeks	Dates	Session	Topic
	$\begin{gathered} \mathrm{To} \\ 12-02-2022 \end{gathered}$	30	Theorem.
		31	Unit Test.
		32	Assignment.
		12 February	Second Saturday
7	$\begin{gathered} 14-02-2022 \\ \text { To } \\ 19-02-2022 \end{gathered}$	33	Unit III - Linear Transformations- Introduction.
		34	Matrices
		35	Examples, Exercise questions.
		36	Theorem.
		37	Linear Transformations- Definitions.
		38	Examples, Exercise questions.
8	$\begin{gathered} 21-02-2022 \\ \text { To } \\ 26-02-2022 \end{gathered}$	39	I Internal Examination
		40	I Internal Examination
		41	I Internal Examination
		42	I Internal Examination
		43	I Internal Examination
		44	I Internal Examination
9	$\begin{gathered} 28-02-2022 \\ \text { To } \\ 05-03-2022 \end{gathered}$	45	Assignment.
		01 March	Maha Sivarathri
		46	Null Spaces and Ranges- Definitions.
		47	Examples, Exercise questions.
		48	Class test.
		49	The Matrix Representation of a Linear TransformationDefinitions.
10	$\begin{gathered} 07-03-2022 \\ \text { To } \\ 12-03-2022 \end{gathered}$	50	Theorem.
		51	Examples, Exercise questions
		52	Rank of a matrix
		53	Examples, Exercise questions
		54	Elementary transformations of a matrix
		12 March	Second Saturday
11	$\begin{gathered} 14-03-2022 \\ \text { To } \\ 19-03-2022 \end{gathered}$	55	Elementary Matrices.
		56	Elementary Transformations and elementary matrices, Employment of only row (column) transformationsExamples, Exercise questions
		57	Invariance of rank through elementary transformationsExamples, Exercise questions
		58	The rank of a product
		59	Class test.

No of Weeks	Dates	Session	Topic
		60	Elementary transformations of a matrix do not alter its rank
12	$\begin{aligned} & 21-03-2022 \\ & \text { To } \\ & 26-03-2022 \end{aligned}$	61	A Convenient method for computing the inverse of a non singular matrix by elementary row transformationsExamples, Exercise questions
		62	Examples, Exercise questions
		63	Examples, Exercise questions
		64	Multiplication of the elements of a row by a non zero number does not alter the rank- Examples, Exercise questions
		65	Theorem.
		66	Examples, Exercise questions
13	$\begin{gathered} 28-03-2022 \\ \text { To } \\ 02-04-2022 \end{gathered}$	67	Examples, Exercise questions
		68	Addition to the elements of a row the products by a number of the corresponding elements of a row does not alter the rank- Examples, Exercise questions.
		69	Reduction to normal form
		70	Unit test.
		71	Unit IV - System of linear equations, Eigen values and Eigen vectors -Introduction.
		72	System of linear homogeneous equations
14	$\begin{gathered} 04-04-2022 \\ \text { To } \\ 09-04-2022 \end{gathered}$	73	Examples, Exercise questions
		74	Theorem.
		75	Null space and nullity of matrix
		76	Theorem.
		77	Sylvester's law of nullity,
		09 April	Second Saturday
15	$\begin{gathered} 11-04-2022 \\ \text { To } \\ 16-04-2022 \end{gathered}$	78	Range of a matrix- Examples, Exercise questions
		79	Class test.
		13 April	Easter Holidays
		14 April	Easter Holidays
		15 April	Easter Holidays
		16 April	Easter Holidays
16	$\begin{gathered} 18-04-2022 \\ \text { To } \\ 23-04-2022 \end{gathered}$	18 April	Easter Holidays
		80	Theorem.
		81	Systems of linear non homogeneous equations
		82	Eigen vectors, Eigen values, Properties of eigen values, CayleyHamilton theorem.
		83	Revision.

No of Weeks	Dates	Session	Topic
		84	Revision.
17	$\begin{gathered} 25-04-2022 \\ \text { To } \\ 30-04-2022 \end{gathered}$	85	II Internal Examination
		86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

Subject Code:	6B 14A MAT
Subject Name:	Operations Research
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	RIYA BABY,PRIJA V, AJEENA JOSEPH

6B14B MAT: Operations Research

Unit I - Linear Programming Problem (30 hours)

Convex sets and their properties, Convex Functions, Local and Global Extrema, Quadratic Forms.
Linear Programming Problem - Mathematical formulation, Graphical solution, General Linear Programming Problem, Slack and Surplus Variables, Canonical and standard form of LPP, Insights into the simplex method. Basic Solution, Degenerate Solution, Basic Feasible Solution, Associated cost vector, Improved basic Feasible solution, Optimum Basic Feasible Solution, Fundamental Properties of solution (Proof of theorems omitted), Simplex method - The computational Procedure, The Simplex Algorithm.
General Primal-Dual Pair, Formulating a dual problem (Sections 0:13, $0: 15,0: 16,0: 17,2: 1,2: 2,2: 3,2: 4,3: 1,3: 2,3: 4,3: 5,3: 6,4: 1,4: 2,4: 3,5: 1,5: 2$, 5:3of the Text).

Unit II - Transportation Problem (25 hours)
LP formulation of the Transportation Problem, Existence of solution in T.P, Duality in Transportation problem, The Transportation Table, Loops in Trasportation Tables, Triangular basis in a T.P (proof of theorem Omitted), Solution of a Trasportation problem, North-west corner Method, Least -Cost Method, VAM, Test For Optimality, Degeneracy in TP, MODI Method. (Sections 10:1,10:2,10:3,10:4,10:5,10:6,10:7,10:8,10:9,10:10,10:12,10:13 of the Text)

Unit III - Assignment Problem and Sequencing Problem (20 hours)
Assignment Problem: Mathematical Formulation of Assignment Problem, Hugarian Assignment Method.
Sequencing Problem: Problem of sequencing, Basic terms used in sequencing, Processing ' n ' jobs through ' 2 ' machines, Processing ' n ' jobs through ' k ' machines, Maintenance Crew Scheduling.
(Sections 11:1, 11:2, 11:3, 12:1, 12:2, 12:3, 12:4, 12:5, 12:7 of the Text)

Unit IV - Games and Strategies (15 hours)

Two-person Zero-sum Games, Basic terms in Game theory, The MaximinMinimax Principle, Solution of game with saddle point, Solution of 2×2 game without saddle point, Graphic solution of 2 xn and mx 2 games, Dominance Property, Modified Dominance Property, Arithmetic Method for nxn Games. (Proofs of all theorems in this unit are omitted).
(Sections 17:1, 17:2, 17:3, 17:4, 17:5, 17:6, 17:7, 17:8 of the Text)
56
Text
K. Swarup, P.K.Gupta and M. Mohan, Operations Research (18th edition), Sulthan Chand and Sons.

TEACHING SCHEDULE

| No of |
| :---: | :---: | :---: | :--- |
| Weeks | Dates \quad Session \quad Topic

No of Weeks	Dates	Session	Topic
		27	Problem solving
6	$\begin{gathered} 07-02-2022 \\ \text { To } \\ 12-02-2022 \end{gathered}$	28	TEST PAPER
		29	General transportation problem, the transportation tables.
		30	Theorems
		31	Loops in transportation table solution of a transportation problem
		32	Problem solving
		12 February	Second Saturday
7	$\begin{gathered} 14-02-2022 \\ \text { To } \\ 19-02-2022 \end{gathered}$	33	Finding an initial basic Feasible solution
		34	Problem solving
		35	Problem solving
		36	Test for optimality, Degeneracy in transportation problem
		37	Transportation algorithm
		38	TEST PAPER
8	$\begin{gathered} 21-02-2022 \\ \text { To } \\ 26-02-2022 \end{gathered}$	39	I Internal Examination
		40	I Internal Examination
		41	I Internal Examination
		42	I Internal Examination
		43	I Internal Examination
		44	I Internal Examination
9	$\begin{aligned} & 28-02-2022 \\ & \text { To } \\ & 05-03-2022 \end{aligned}$	45	Solution methods of Assignment problem
		01 March	Maha Sivarathri
		46	Solution methods of Assignment problem
		47	Problem of sequencing, Basic terms used in sequencing.
		48	Problem of sequencing, Basic terms used in sequencing.
		49	processing n Jobs through two machines
10	$\begin{gathered} 07-03-2022 \\ \text { To } \\ 12-03-2022 \end{gathered}$	50	Problem solving
		51	Problem solving
		52	Problem solving
		53	Processing n jobs through k machines
		54	Problem solving
		12 March	Second Saturday
11	$\begin{gathered} 14-03-2022 \\ \text { To } \end{gathered}$	55	Processing 2 jobs through k machines,
		56	Processing 2 jobs through k machines,
		57	Problem solving

No of Weeks	Dates	Session	Topic
		83	Problem solving
		84	Question paper discussion
17	$\begin{gathered} 25-04-2022 \\ \text { To } \\ 30-04-2022 \end{gathered}$	85	II Internal Examination
		86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

[^0]: 1. S. R. K. Iyengar and R. K. Jain, Mathematical methods, Narosa Publishing House
 2. E. Kreyzig, Advanced Engineering Mathematics (10th edition), John Wiley.
