DONBOSCOARTS\&SCIENCECOLLEGE ANGADIKADAVU
 (AffiliatedtoKannur UniversityApproved byGovernment ofKerala)
 ANGADIKADAVUP.O.,IRITTY,KANNUR-670706

COURSEPLAN

M.Sc.Mathematics

(2021-23)

I Semester M.Sc. Mathematics (2021-23)

Sl. No.	Name of Subjects with Code	Name of the Teacher	Duty Hours Per Week
1.	MAT1C01 Basic Abstract Algebra	Athulya P	6
2.	MAT1C02 Linear Algebra	Remya Raj	$\mathbf{6}$
3.	MAT1C03 Real Analysis	Najumunnisa K	6
4.	MAT1C04 Basic Topology	Ajeena Joseph	6
5.	MAT1C05 Differential Equations	Anil M V \& Noble Philip	6
	Name of Class In-charge	Ajeena Joseph	

TIMETABLE

Day	$\mathbf{0 9 . 5 0 ~ A m ~ - ~}$ $\mathbf{1 0 . 4 5 ~ A m ~}$	10.45 Am -11.40 Am	$\mathbf{1 1 . 5 5}$ Am -12.50 Pm	$\mathbf{0 1 . 4 0 ~ P m ~ - ~}$ $\mathbf{0 2 . 3 5}$ Pm	$\mathbf{0 2 . 3 5} \mathbf{~ P m ~ - ~}$ $\mathbf{0 3 . 3 0} \mathbf{~ P m}$
1	MAT 1C03 Real Analysis	MAT 1C04 Basic Topology	MAT1C05 Differental Equations	MAT1C02 Linear algebra	MAT1C01 Abstract Algebra
2	MAT 1C04 Basic Topology	MAT1C01 Abstract Algebra	MAT 1C03 Real Analysis	MAT1C05 Differental Equations	MAT1C02 Linear algebra
3	MAT1C02 Linear algebra	MAT 1C04 Basic Topology	MAT1C01 Abstract Algebra	MAT 1C03 Real Analysis	MAT1C05 Differental Equations
5	MAT1C01 Abstract Algebra	MAT 1C03 Real Analysis	MAT 1C04 Basic Topology	MAT1C05 Differental Equations	MAT1C02 Linear algebra
6	MAT1C05 Differental Equations	MAT 1C04 Basic Topology	MAT 1C03 Real Analysis	MAT1C02 Linear algebra	MAT1C01 Abstract Algebra
MAT1C02 Linear algebra	MAT1C05 Differental Equations	MAT1C01 Abstract Algebra	MAT 1C04 Basic Topology	MAT 1C03 Real Analysis	

Subject Code:	MAT1C01
Subject Name:	Basic Abstract Algebra
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Athulya \mathbf{P}

SYLLABUS
MAT1C01 Basic Abstract Algebra
Text Book: John. B. Fraleigh - A First Course in Abstract Algebra (7th Edition), Narosa (2003)

Unit I

Direct Products and finitely generated Abelian Groups, Group Action on a Set, Applications of Sylow Theorems. (Chapter-2: Section 11; Chapter-3: Section 16; Chapter-7: Sections 36, 37)

Unit II

Field of Quotients of the Integral Domain, Isomorphism Theorems, Series of Groups, Free Abelian Groups, Field of Quotients of the Integral Domain (Chapter-4: Section 21, Chapter-7: Section 34, 35, 38).

Unit III

Ring of Polynomials, Factorization of Polynomials over a Field, Homomorphisms and Factor Rings, Prime and Maximal Ideals (Chapter-4: Section 22, 23; Chapter-5: Section 26, 27).

Reference:

1. I. N. Herstein: Topics in Algebra.Wiley India Pvt. Ltd, 2006.
2. D. S. Malik, John. N. Merdson, M. K. Sen: Fundamentals of Abstract Algebra Mc Graw-Hill Publishing Co., 1996.
3. Clark, Allen: Elements of Abstract Algebra. Dover Publications, 1984.
4. David M. Burton: A First course in Rings and Ideals.Addison-Wesley Educational Publishers Inc., 1970.
5. Joseph. A. Gallian: Contemporary Abstract Algebra. Narosa, 1999.
6. M. Artin: Algebra Addison Wesley; 2nd edition, 2010.

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{gathered} 06-10-2021 \\ \text { To } \\ 09-10-2021 \end{gathered}$	1	Unit 1- introduction
		2	Direct products
		3	Theorem
		09 October	Second Saturday
2	$\begin{gathered} 11-10-2021 \\ \text { To } \\ 16-10-2021 \end{gathered}$	4	Theorem
		5	Example
		6	Class Test
		14 October	Mahanavami
		15 October	Vijayadashami
		7	Definition
3	$\begin{gathered} 18-10-2021 \\ \text { To } \\ 23-10-2021 \end{gathered}$	8	Examples
		19 October	Nabidinam
		9	Fundamental theorem of Finitely generated Abelian groups
		10	Applications
		11	Thorem
		12	Thorem
4	$\begin{gathered} 25-10-2021 \\ \text { To } \\ 30-10-2021 \end{gathered}$	13	Group action on a set
		14	Class Test
		15	Examples
		16	Isotropy subgroups
		17	Theorem
		18	Orbits
5	$\begin{gathered} 01-11-2021 \\ \text { To } \\ 06-11-2021 \end{gathered}$	19	Theorem
		20	Sylow theorems- introduction.
		21	Cauchys theorem
		04 November	Diwali
		22	Definition, Lemma
		23	First sylow theorem
6	$\begin{gathered} 08-11-2021 \\ \text { To } \\ \text { 13-11-2021 } \end{gathered}$	24	Sylow p subgroup
		25	Second sylow theorem
		26	Third sylow theorem
		27	Class Test
		28	Examples
		13 November	Second Saturday
7	$\begin{gathered} 15-11-2021 \\ \text { To } \\ 20-11-2021 \end{gathered}$	29	Applications of sylow theory
		30	Class equation
		31	Theorem
		32	Lemma

		33	Examples
		34	Unit 2- introduction.
8	$\begin{gathered} 22-11-2021 \\ \text { To } \\ 27-11-2021 \end{gathered}$	35	The construction
		36	Class Test
		37	Seminar
		38	Field of quotients of an integral domain
		39	Theorem
		40	Isomorphism theorems- introduction
9	$\begin{gathered} 29-11-2021 \\ \text { To } \\ 04-12-2021 \end{gathered}$	41	First isomorphism theorem
		42	Lemma
		43	Second isomorphism theorem
		44	Third isomorphism theorem
		45	Class Test
		46	Subnormal and normal series
10	$\begin{gathered} 06-12-2021 \\ \text { To } \\ \text { 11-12-2021 } \end{gathered}$	47	Examples
		48	Examples
		49	Definitions
		50	Lemma
		51	Example
		11 December	Second Saturday
11	$\begin{gathered} 13-12-2021 \\ \text { To } \\ \text { 18-12-2021 } \end{gathered}$	52	Zassenhaus lemma
		53	Schreier theorem
		54	Definition \& Examples
		55	Jordan Holder theorem
		56	Seminar
		57	Seminar
12	$\begin{gathered} 20-12-2021 \\ \text { To } \\ 25-12-2021 \end{gathered}$	58	Seminar
		59	Class Test
		60	Seminar
		61	Seminar
		62	Seminar
		24 December	
		25 December	
13	$\begin{gathered} 27-12-2021 \\ \text { To } \\ 01-01-2022 \end{gathered}$	27 December	
		28 December	
		29 December	
		30 December	
		31 December	
		01 January	
14	$\begin{gathered} 03-01-2022 \\ \text { To } \\ 08-01-2022 \end{gathered}$	63	I Internal Examination
		64	I Internal Examination
		65	I Internal Examination
		66	Unit 3 -Rings of polynomials

		67	Class Test
		68	Polynomial in an indeterminate
15	$\begin{aligned} & 10-01-2022 \\ & \text { To } \\ & 15-01-2022 \end{aligned}$	69	Definition
		70	Example
		71	The Evaluation Homomorphisms
		72	Factorization of polynomial over a field
		73	Factor theorem
		74	Example
16	$\begin{gathered} 17-01-2022 \\ \text { To } \\ \text { 22-01-2022 } \end{gathered}$	75	Corollary
		76	Irreducible polynomials
		77	Definition and examples
		78	Theorem
		79	Homomorphisms
		80	Theorem
17	$\begin{gathered} 24-01-2022 \\ \text { To } \\ \text { 29-01-2022 } \end{gathered}$	81	Factor rings
		82	Exam
		26 January	Republic Day
		83	Prime and maximal ideals
		84	Examples
		85	Revision
18	$\begin{gathered} 31-01-2022 \\ \text { To } \\ 05-02-2022 \end{gathered}$	86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

Subject Code:	MAT1C03
Subject Name:	REAL ANALYSIS
No. of Credits:	$\mathbf{4}$
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Najumunnisa .K

SYLLABUS

MAT1C03 REAL ANALYSIS

Text Book I: Walter Rudin: Principles ofMathematical Analysis; 3rdEditionMcGraw-Hill International
Text Book 2: T.M Apostol: Mathematical Analysis 2nd Edition; Narosa Publications (1973)

Unit-I

Basic Topology: Finite, Countable and Uncountable Sets, Metric Spaces, Compact Sets Perfect Sets, Connected Sets, Continuity: Limits of Functions, Continuous Functions, Continuity and Compactness, Continuity and Connectedness, Discontinuities, Monotonic Functions, Infinite limits and Limits at Infinity.
(Text Book1; Chapter-2, All sections: Chapter-4, All sections)

Unit-II

Differentiation: The derivative of Real Function, Mean Value Theorems, The Continuity of Derivatives, L 'Hospital' s Rule, Derivatives of Higher Order Taylor's Theorem, Differentiation of Vector-Valued Functions. The Riemann-Stieltjes Integral: Definition and Existence of the Integral, Properties of the Integral.
(Text Book 1: Chapter-5; All sections; Chapter-6; sections 6.1 to 6.19)

Unit-III

The Riemann-Stieltjes Integral (Continued); Integration and Differentiation, Integration of Vector-Valued Functions,
(Text Book 1: Chapter-6; Sections 6.20 to 6.25;)
Functions of Bounded Variations and Rectifiable Curves.
(Text Book2; Chapter-6; Sections 6.1 to 6.12)

Reference:

1. R.G Bartle and D.R Sherbert; Introduction to Real Analysis; John Wiley Bros. 1982
2. L.M Graves; The Theory of functions of real variable; Tata McGraw-Hill Book Co.
3. M.H Porter and C.B Moraray;A first Course in Real Analysis; Springer Verlag UTM 1977.
4. S.C Sexena and S.M Shah: Introduction to Real Variable Theory, Intext Educational Publishers, San Francisco
5. S.R Ghopade and B.V Limaye; A Course in Calculus and Real Analysis, Springer.
6. N.L Carothers- Real Analysis Cambridge University Press.

TEACHING SCHEDULE

$\begin{array}{c}\text { No of } \\ \text { Weeks }\end{array}$	Dates	Session	
$\mathbf{1}$	06-10-2021		
	To		
	$09-10-2021$		

		33	Class test.
		34	Discussion
8	$\begin{gathered} 22-11-2021 \\ \text { To } \\ 27-11-2021 \end{gathered}$	35	Seminar.
		36	Seminar.
		37	Seminar.
		38	Seminar.
		39	The derivative of Real Function, Theorems.
		40	Mean Value Theorems
9	$\begin{gathered} 29-11-2021 \\ \text { To } \\ 04-12-2021 \end{gathered}$	41	Theorems.
		42	The Continuity of Derivatives
		43	Assignment
		44	Exercise questions.
		45	Class test.
		46	L 'Hospital' s Rule
10	$\begin{gathered} 06-12-2021 \\ \text { To } \\ \text { 11-12-2021 } \end{gathered}$	47	Theorems.
		48	Corollary.
		49	Derivatives of Higher Order Taylor's Theorem
		50	Theorems.
		51	Corollary.
		11 December	Second Saturday
11	$\begin{gathered} 13-12-2021 \\ \text { To } \\ 18-12-2021 \end{gathered}$	52	Differentiation of vector valued function.
		53	The Riemann-Stieltjes Integral
		54	Class Test
		55	Theorems.
		56	Corollary.
		57	Exercise questions.
12	$\begin{gathered} 20-12-2021 \\ \text { To } \\ 25-12-2021 \end{gathered}$	58	Seminar.
		59	Seminar.
		60	Seminar.
		61	Seminar.
		62	Seminar.
		24 December	Christmas Holidays
		25 December	Christmas Holidays
13	$\begin{gathered} 27-12-2021 \\ \text { To } \\ 01-01-2022 \end{gathered}$	27 December	Christmas Holidays
		28 December	Christmas Holidays
		29 December	Christmas Holidays
		30 December	Christmas Holidays
		31 December	Christmas Holidays
		01 January	Christmas Holidays
14	$\begin{gathered} 03-01-2022 \\ \text { To } \\ 08-01-2022 \end{gathered}$	63	I Internal Examination
		64	I Internal Examination
		65	I Internal Examination
		66	Definition and Existence of the Integral

		67	Corollary.
		68	Assignment
15	$\begin{gathered} 10-01-2022 \\ \text { To } \\ 15-01-2022 \end{gathered}$	69	Properties of the Integral
		70	Theorems.
		71	Discussion
		72	The Riemann-Stieltjes Integral (Continued); Theorems.
		73	Theorems.
		74	Integration of Vector-Valued Functions.
16	$\begin{gathered} 17-01-2022 \\ \text { To } \\ 22-01-2022 \end{gathered}$	75	Corollary.
		76	Class test.
		77	Functions of Bounded Variations and Rectifiable Curves.
		78	Exercise questions.
		79	Corollary.
		80	Integration and Differentiation,
17	$\begin{gathered} 24-01-2022 \\ \text { To } \\ \text { 29-01-2022 } \end{gathered}$	81	Theorems.
		82	Corollary.
		26 January	Republic Day
		83	Exercise questions.
		84	Class test.
		85	Theorems.
18	$\begin{gathered} 31-01-2022 \\ \text { To } \\ 05-02-2022 \end{gathered}$	86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

Subject Code:	MAT1CO4
Subject Name:	Basic topology
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Ajeena Joseph

SYLLABUS

MAT1CO4 Basic topology

Text: C. Wayne Patty, Foundations of topology, $2^{\text {nd }}$ edition- Johns \& Bartlett Pvt. Ltd, New Delhi,2012

Unit I

Topological spaces: The definition and examples, Basis for a topology, closed sets, closures and interior of sets, Metric spaces, Convergence, continuous functions and homeomorphisms.
[Chapter 1: sections 1.2 to 1.7, excluding theorem 1.46 and theorem 1.51]

Unit II

New spaces from old ones: subspaces, the product topology on XxY , the product topology, the weak topology and the product topology.
[Chapter 2: sections 2.1 to 2.4]

Unit III

Connectedness in metric spaces, connected spaces, pathwise and local connectedness, totally disconnected spaces.
[Chapter 3: sections 3.1 to 3.3 excluding theorem 3.29 and theorem 3.30]

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{gathered} 06-10-2021 \\ \text { To } \\ 09-10-2021 \end{gathered}$	1	Definition of topological spaces
		2	Examples
		3	Examples
		09 October	Second Saturday
2	$\begin{aligned} & 11-10-2021 \\ & \text { To } \\ & 16-10-2021 \end{aligned}$	4	Theorem
		5	Metrizable spaces
		6	Theorem
		14 October	Mahanavami
		15 October	Vijayadashami
		7	Basis
3	$\begin{gathered} 18-10-2021 \\ \text { To } \end{gathered}$	8	Sub- basis
		19 October	Nabidinam
		9	First countable spaces

	23-10-2021	10	Theorem
		11	Theorem
		12	Second countable spaces
4	$\begin{gathered} 25-10-2021 \\ \text { To } \\ 30-10-2021 \end{gathered}$	13	Theorem
		14	Theorem
		15	Class test
		16	Separable sapces
		17	Theorem
		18	Theorem
5	$\begin{gathered} 01-11-2021 \\ \text { To } \\ 06-11-2021 \end{gathered}$	19	Closed sets
		20	Assignment
		21	Closure
		04 November	Diwali
		22	Interior of set
		23	Theorem
6	$\begin{gathered} 08-11-2021 \\ \text { To } \\ 13-11-2021 \end{gathered}$	24	Convergence
		25	Class test
		26	Theorem
		27	Metric spaces
		28	Theorem
		13 November	Second Saturday
7	$\begin{gathered} 15-11-2021 \\ \text { To } \\ 20-11-2021 \end{gathered}$	29	Homeomorphisms
		30	Theorem
		31	Theorem
		32	Theorem
		33	Assignment
		34	Theorem
8	$\begin{gathered} 22-11-2021 \\ \text { To } \\ 27-11-2021 \end{gathered}$	35	Theorem
		36	Subspaces
		37	Theorem
		38	Theorem
		39	Class test
		40	Theorem
9	$\begin{gathered} 29-11-2021 \\ \text { To } \\ 04-12-2021 \end{gathered}$	41	Examples
		42	Product topology
		43	Box topology
		44	Examples
		45	Theorem
		46	Theorem
10	$\begin{gathered} 06-12-2021 \\ \text { To } \\ 11-12-2021 \end{gathered}$	47	Product topology basis
		48	Weak topology
		49	Assignment
		50	Theorem

		51	Theorem
		11 December	Second Saturday
11	$\begin{gathered} 13-12-2021 \\ \text { To } \\ 18-12-2021 \end{gathered}$	52	Theorem
		53	Seminar
		54	Seminar
		55	Class test
		56	Theorem
		57	Theorem
12	$\begin{gathered} 20-12-2021 \\ \text { To } \\ 25-12-2021 \end{gathered}$	58	Theorem
		59	Connectedness
		60	Examples
		61	Examples
		62	Assignment
		24 December	
		25 December	
13	$\begin{gathered} 27-12-2021 \\ \text { To } \\ 01-01-2022 \end{gathered}$	27 December	
		28 December	
		29 December	
		30 December	
		31 December	
		01 January	
14	$\begin{gathered} 03-01-2022 \\ \text { To } \\ 08-01-2022 \end{gathered}$	63	I Internal Examination
		64	I Internal Examination
		65	I Internal Examination
		66	Connected spaces
		67	Connected spaces
		68	Theorem
15	$\begin{gathered} 10-01-2022 \\ \text { To } \\ 15-01-2022 \end{gathered}$	69	Theorem
		70	Pathwise connected
		71	Theorem
		72	Theorem
		73	Local connectedness
		74	Local connectedness
16	$\begin{gathered} 17-01-2022 \\ \text { To } \\ 22-01-2022 \end{gathered}$	75	Theorem
		76	Totally disconnected spaces
		77	Totally disconnected spaces
		78	Theorem
		79	Class test
		80	Theorem
17	$\begin{gathered} 24-01-2022 \\ \text { To } \\ 29-01-2022 \end{gathered}$	81	Theorem
		82	Theorem
		26 January	Republic Day
		83	Revision

		84	Revision
		85	Revision
18	$\begin{gathered} 31-01-2022 \\ \text { To } \\ 05-02-2022 \end{gathered}$	86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

Subject Code:	MAT1C02
Subject Name:	Linear Algebra
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Remya Raj\& Riya Baby

SYLLABUS

MAT1C02 Linear Algebra

Unit 1 : Linear Transformations: Linear Transformations, The Algebra of Linear Transformations, Isomorphism, Representation of Transformation by Matrices, (Chapter-3; Sections 3.1, 3.2,3.3, 3.4,3.5,3.6, 3.7,)

Linear Functionals, The Double Dual, The Transpose of a Linear Transformation.Chapter-6: Section)
Unit 2:Elementary Canonical Forms: Introduction, characteristic values, Annihilating Polynomials ,Invariant Subspace, Simultaneous Triangulations\& Simultaneous Diagonalisation. , (Chapter-6: Sections 6.1, 6.2,6.3, 6.4, 6.5, 6.6)

Unit 3: Elementary Canonical Forms: Invariant Direct Sums The Primary Decomposition Theorem.
The Rational and Jordan Forms: Cyclic Subspaces and Annihilators, Cyclic Decomposition and the Rational Forms ,The Jordan forms.
Inner Product Spaces: Inner Products, Inner Product Spaces, (Chapter 6 section 6.7,6.8; Chapter7: Sections: 7.1, 7.2,7.3, Chapter-8: Sections 8.1, 8.2,)

Text Book:

Kenneth Hoffman \& Ray Kunze; Linear Algebra; Second Edition, Prentice-Hall of India Pvt. Ltd

Reference:

1. Stephen H. Friedberg, Arnold J Insel and Lawrence E. Spence:

Linear Algebra: 4th Edition 2002: Prentice Hall.
2. Serge A Land:

Linear Algebra; Springer
3. Paul R Halmos Finite-Dimensional Vector Space; Springer 1974.
4. McLane \& Garrell Birkhoff;

Algebra; American Mathematical Society 1999.
5. Thomas W. Hungerford:

Algebra; Springer 1980
6. Neal H.McCoy \& Thomas R.Berger:

Algebra-Groups, Rings \& Other Topics: Allyn \& Bacon.
7. S Kumaresan; Linear Algebra A Geometric Approach; Prentice-Hall of India 2003.

TEACHING SCHEDULE

$\begin{array}{c}\text { No of } \\ \text { Weeks }\end{array}$	Dates	Session	
$\mathbf{1}$	06-10-2021		
	To		
	$09-10-2021$		

	20-11-2021	32	Problems
		33	Problems
		34	Class test
8	$\begin{gathered} 22-11-2021 \\ \text { To } \\ 27-11-2021 \end{gathered}$	35	Double dual - definition, theorem 17
		36	Corollary, theorem 18
		37	Maximal proper subspace of V- definition, hyper space definition, theorem 19
		38	Lemma
		39	Theorem 20
		40	The transpose of a LT - definition, example
9	$\begin{gathered} 29-11-2021 \\ \text { To } \\ 04-12-2021 \end{gathered}$	41	Theorem 22
		42	Problems
		43	Revision
		44	Class test
		45	Unit 2: Elementary canonical forms- characteristic values - definition, remarks
		46	Theorem 1,characteristic polynomial - definition, similar marices - definition
10	$\begin{gathered} 06-12-2021 \\ \text { To } \\ 11-12-2021 \end{gathered}$	47	Lemma, remarks
		48	Problems
		49	Diagonalizable LO - definition, remarks, examples
		50	Lemma, remark
		51	Lemma
		11 December	Second Saturday
11	$\begin{gathered} 13-12-2021 \\ \text { To } \\ 18-12-2021 \end{gathered}$	52	Theorem 2
		53	Problems
		54	Problems
		55	Problems
		56	Annihilating polynomial: ideal , principal ideal definition, remarks
		57	Remarks
12	$\begin{gathered} 20-12-2021 \\ \text { To } \\ 25-12-2021 \end{gathered}$	58	Minimal polynomial- definition, theorem 3
		59	Problems
		60	Problems
		61	Problems
		62	Theorem 4: Cayley Hamilton theorem, problems
		24 December	
		25 December	
13	$\begin{gathered} 27-12-2021 \\ \text { To } \\ 01-01-2022 \end{gathered}$	27 December	
		28 December	
		29 December	
		30 December	
		31 December	
		01 January	

14	$\begin{gathered} 03-01-2022 \\ \text { To } \\ 08-01-2022 \end{gathered}$	63	I Internal Examination
		64	I Internal Examination
		65	I Internal Examination
		66	Invariant subspace - definition, examples, T- conductordefinition, lemma
		67	Remark, triangulable- definition, Lemma - definition
		68	Lemma - definition, Theorem 5
15	$\begin{gathered} 10-01-2022 \\ \text { To } \\ 15-01-2022 \end{gathered}$	69	Theorem 6
		70	Simultaneous triangulation, diagonalization, definition, lemma
		71	Theorem 7,8
		72	Direct sum decomposition- definition remarks, lemma
		73	Theorem 9,examples
		74	Unit 3: inner product space - definition, examples, normed space- definition
16	$\begin{gathered} 17-01-2022 \\ \text { To } \\ 22-01-2022 \end{gathered}$	75	Polarization identities
		76	Theorem 1, examples
		77	Orthogonal victors definition, examples, Theorem 2
		78	Theorem 3,examples
		79	Best approximation- definition, theorem 4
		80	Orthogonal Projection- definition, theorem 5, examples, Bessels inequality
17	$\begin{gathered} 24-01-2022 \\ \text { To } \\ 29-01-2022 \end{gathered}$	81	Invariant direct sums- definition, theorem 10,11
		82	Theorem 12: primary decomposition theorem, rational and Jordan form of a matrix, examples
		26 January	Republic Day
		83	Cyclic subspaces- definition, remarks, results, theorem
		84	Revision, university Question paper discussion
		85	Class test
18	$\begin{gathered} 31-01-2022 \\ \text { To } \\ 05-02-2022 \end{gathered}$	86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

Subject Code:	MAT 1C05
Subject Name:	Differential Equations
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Anil M V \& Noble Philip

SYLLABUS

MAT1C05 Differential Equations

Text Book: G.F Simmons - Differential Equations with Historical Notes; Third Edition-CRC Press, Taylor and Francis Group.

Unit I

Introduction. A Review of Power Series, Series Solutions of First Order Equations, Second Order Linear Equations. Ordinary Points, Regular Singular Points, Regular Singular Points (Continued), Gauss's Hyper Geometric Equation, The Point at Infinity.
(Chapter-5; Sections 26 to 32)

Unit II

Legendre Polynomials, Properties of Legendre Polynomials, Bessel Functions. The Gamma Function, Properties of Bessel functions, General Remarks on Systems, Linear Systems Homogeneous Linear Systems with Constant Coefficients.
(Chapter-8; Sections 44 to 47; Chapter-10; Sections 54 to 56)

Unit III

Oscillations and the Sturm Separation Theorem, The Sturm Comparison Theorem, The Method of Successive Approximations, Picard's Theorem, Systems. The Second Order Linear Equation (Chapter-4; Sections 24 and 25; Chapter-13; Sections 68 to 70)

Reference:

1. G.Birkoff and G.C Rota: Ordinary Differential Equations; Wiley and Sons; (1978)
2. E.A Coddington; An Introduction to Ordinary Differential Equations; Prentice Hall of India, New Delhi (1974)
3. P.Hartmon; Ordinary Differential Equations; John Wiley and Sons
4. Chakraborti; Elements of Ordinary Differential Equations and Special Functions; Wiley Eastern Ltd New Delhi (1990)
5. L.S Poutrigardian: A Course in Ordinary Differential Equations; Hindustan Publishing Corporation Delhi (1967)
6. S.G Deo \& V.Raghavendra; Ordinary Differential Equations and Stability Theory; Tata McGraw Hill New Delhi (1967)
7. V.I Arnold; Ordinary Differential Equations; MIT Press, Cambridge 1981

TEACHING SCHEDULE

| No of |
| :---: | :---: | :---: | :--- |
| Weeks | Dates \quad Session \quad Topic

		67	Sturm separation Theorem
		68	Normal and standard form
15	$\begin{gathered} 10-01-2022 \\ \text { To } \\ 15-01-2022 \end{gathered}$	69	Theorem
		70	Problems
		71	Theorem
		72	Discussions
		73	The Sturm comparison theorem
		74	Theorem
16	$\begin{gathered} 17-01-2022 \\ \text { To } \\ 22-01-2022 \end{gathered}$	75	Successive approximations
		76	Problems
		77	Picard's iteration method
		78	Problems
		79	Class test
		80	The Picard's theorem
17	$\begin{gathered} 24-01-2022 \\ \text { To } \\ \text { 29-01-2022 } \end{gathered}$	81	The Picard's theorem(contd.)
		82	Lipschitz condition
		26 January	Republic Day
		83	Examples
		84	Systems of initial value problems
		85	Revision
18	$\begin{gathered} 31-01-2022 \\ \text { To } \\ 05-02-2022 \end{gathered}$	86	II Internal Examination
		87	II Internal Examination
		88	II Internal Examination
		89	II Internal Examination
		90	II Internal Examination

