DON BOSCO ARTS \& SCIENCE COLLEGE ANGADIKADAVU
 (Affiliated to Kannur University Approved by Government of Kerala)
 ANGADIKADAVU P.O., IRITTY, KANNUR - 670706

COURSE PLAN

Mathematics

(2019-22)

SEMESTER - V

ACADEMIC YEAR - (2021-22)

V Semester B.Sc. Mathematics (2019-22)

SL. No.	Name of Subjects with Code	Name of the Teacher	Duty Hours per week
1.	5B05 MAT - Set Theory, Theory Of Equations Of Complex Numbers	Ajeena Joseph	
2.	5B06 MAT - Real Analysis	Athulya P	
3.	5B07 MAT - Abstract Algebra	Anil M V	
4.	5B08 MAT - Differential Equations And Laplace Transforms	Prija V	
5.	5B09 MAT - Vector Calculas	Noble Philip	
	Name of Class In charge	Noble Philip	

TIME TABLE

Day	09.50 Am 10.45 Am	$\begin{gathered} \text { 10.45 Am }-11.40 \\ \text { Am } \end{gathered}$	$\begin{gathered} \text { 11.55 Am -12.50 } \\ \text { Pm } \end{gathered}$	01.40 Pm 02.35 Pm	$\begin{gathered} \text { 02.35 Pm - } \\ \text { 03.30 Pm } \end{gathered}$
1	$\begin{gathered} \text { 5B09 MAT } \\ \text { Vector Calculas } \end{gathered}$	5B06 MAT Real Analysis	5B08 MAT Differential Equations And Laplace Transforms	5B07 MAT Abstract Algebra	5B05 MAT Set Theory,Theory Of Equations Of Complex Numbers
2	5B06 MAT Real Analysis	Open Course	5B07 MAT Abstract Algebra	5B09 MAT Vector Calculas	5B08 MAT Differential Equations And Laplace Transforms
3	5B05 MAT Set Theory,Theory Of Equations Of Complex Numbers	Open Course	5B06 MAT Real Analysis	5B07 MAT Abstract Algebra	5B09 MAT Vector Calculas
4	5B07 MAT Abstract Algebra	5B08 MAT Differential Equations And Laplace Transforms	5B05 MAT Set Theory,Theory Of Equations Of Complex Numbers	5B09 MAT Vector Calculas	5B06 MAT Real Analysis
5	5B08 MAT Differential Equations And Laplace Transforms	5B05 MAT Set Theory,Theory Of Equations Of Complex Numbers	$\begin{aligned} & \text { 5B09 MAT } \\ & \text { Vector Calculas } \end{aligned}$	5B06 MAT Real Analysis	5B07 MAT Abstract Algebra
6	5B05 MAT Set Theory,Theory Of Equations Of Complex Numbers	5B08 MAT Differential Equations And Laplace Transforms	5B06 MAT Real Analysis	5B07 MAT Abstract Algebra	5B09 MAT Vector Calculas

Subject Code:	5B05 MAT
Subject Name:	Set theory, Theory of Equations and Complex numbers
No. of Credits:	4
No. of Contact Hours:	72
Hours per Week:	5
Name of the Teacher:	Ajeena Joseph

Syllabus

Unit I : Finite and Infinite sets (14 hours)

Finite and Infinite sets, Countable sets, Uncountable sets, Cantor's theorem (section 1.3 of text I)

Unit II: Theory of equations I (20 hours)

Roots of equations, Relation connecting roots and coefficient of an equation, Transformation of equations, Special cases, The cubic equation, Character and position of roots of an equation, Some general theorems, Descartes rule of signs, Corollaries, De Gua' s rule, Limits to the roots of an equation, To find rational roots of an equation,
Newton's method of divisors, Symmetric function of roots of an equation, symmetric function involving only the difference of roots of $f(x)=0$, Equation whose roots are symmetric functions
(Sections 1 to 17 in chapter VI of text 2)

Unit II: Theory of equations II (20 hours)

Reciprocal equation (proof omitted) (section 1 in chapter XI of text 2)
The cubic equation, Equation whose roots are the squares of the difference of the roots, Character of roots, Cardan' s solutions
(section 5 of chapter VI and sections 1 to 4 of chapter XII in text 2)

Unit III: Complex numbers ($\mathbf{1 8}$ hours)

Quick review of complex numbers, Roots of complex numbers, General form of De Moivre's theorem, the nth root of unity, factors, imaginary cube root of unity
(Sections 15 to 20 of chapter V of text 2)
Polar form of complex numbers, powers and roots (section 13.2 of text 3)
Texts:
(1) R.G. Bartle and D.R.Sherbert, Introduction to real analysis, $4^{\text {th }}$ edition, Wiley
(2) Bernard and Child, Higher algebra, A.I.T.B.S publishers
(3) E.Kreyzig, Advanced Engineering Mathematics, $10^{\text {th }}$ edition, Wiley.

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{gathered} 12-07-2021 \\ \text { To } \\ 17-07-2021 \end{gathered}$	1	Finite set and infinite set
		2	Examples
		3	Uniqueness theorem
		4	Theorem
		5	Theorem
2	$\begin{gathered} 19-07-2021 \\ \text { To } \\ 24-07-2021 \end{gathered}$	6	Theorem
		20 July	Bakrid- Holiday
		7	Examples
		8	Countable set
		9	Countable set
		10	Examples
3	$\begin{gathered} 26-07-2021 \\ \text { To } \\ 31-07-2021 \end{gathered}$	11	Class test
		12	Examples
		13	Theorem
		14	Theorem
		15	Theorem
4	$\begin{gathered} 02-08-2021 \\ \text { To } \\ 07-08-2021 \end{gathered}$	16	Theorem
		17	Theorem
		18	Assignment
		19	Cantor's theorem
		20	Examples
5	$\begin{aligned} & 09-08-2021 \\ & \text { To } \\ & 14-08-2021 \end{aligned}$	21	Theorem
		22	Introduction to roots of an equation
		23	Problems
		24	Problems
		25	Examples
6	$\begin{gathered} 16-08-2021 \\ \text { To } \\ 21-08-2021 \end{gathered}$	26	Relation connecting roots and coefficient of an eauation
		27	Assignment
		19 August	Moharam/Onam Vacation
		20 August	Onam Vacation
		21 August	Onam Vacation
7	$\begin{aligned} & 23-08-2021 \\ & \text { To } \\ & 28-08-2021 \end{aligned}$	23 August	Onam Vacation
		24 August	Onam Vacation
		25 August	Onam Vacation
		26 August	Onam Vacation

No of Weeks	Dates	Session	Topic
15	$\begin{gathered} 18-10-2021 \\ \text { To } \\ 23-10-2021 \end{gathered}$	18 October	Study Leave
		19 October	Milad-i-Sherif/ Study Leave
			Study Leave
			IV Semester University Examination
			IV Semester University Examination
			IV Semester University Examination
16	$\begin{gathered} 25-10-2021 \\ \text { To } \\ 30-10-2021 \end{gathered}$		IV Semester University Examination
			IV Semester University Examination
			IV Semester University Examination
			IV Semester University Examination
			IV Semester University Examination
			IV Semester University Examination
17	$\begin{gathered} 01-11-2021 \\ \text { To } \\ 06-11-2021 \end{gathered}$		IV Semester University Examination
			IV Semester University Examination
		58	Reciprocal equation
		4 November	Diwali
		59	Problems
		60	Problems
18	$\begin{gathered} 08-11-2021 \\ \text { To } \\ \text { 13-11-2021 } \end{gathered}$	61	Equation whose roots are squares of the difference of roots
		62	Problems
		63	Character of the roots
		64	Class test
		65	Cardans solutions
19	$\begin{gathered} 15-11-2021 \\ \text { To } \\ 19-11-2021 \end{gathered}$	66	Problems
		67	Problems
		68	Introduction to complex numbers
		69	Problems
		70	Problems
20	$\begin{gathered} 22-11-2021 \\ \text { To } \\ 26-11-2021 \end{gathered}$	71	De Moviers formula
		72	Roots of unity
21	$\begin{gathered} 29-11-2021 \\ \text { To } \\ 03-12-2021 \end{gathered}$		Internal Examination
			Internal Examination

No of Weeks	Dates	Session	Topic
22	$\begin{gathered} 06-12-2021 \\ \text { To } \\ 10-12-2021 \end{gathered}$		Internal Examination
			Study Leave
23	$\begin{gathered} 13-12-2021 \\ \text { To } \\ 17-12-2021 \end{gathered}$		Study Leave
			Study Leave
24	$\begin{gathered} 20-12-2021 \\ \text { To } \\ 24-12-2021 \end{gathered}$		Study Leave
			Study Leave
			Study Leave
			Christmas Vacation
			Christmas Vacation
25			Christmas Vacation

Subject Code:	5B06 MAT
Subject Name:	Real Analysis I
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Athulya P

5B06 MAT: Real Analysis I

Unit I - The Real Numbers (20 hours)

Algebraic and Order Properties of \mathbb{R}, Absolute Value and Real Line, The Completeness Property of \mathbb{R}, Applications of the Supremum Property, Intervals
(Sections 2.1, 2.2, 2.3, 2.4, 2.5 of the Text).
Unit II - Sequences (30 hours)
Sequences and their Limits, Limit Theorems, Monotone Sequences, Subsequences and the Bolzano-Weierstrass Theorem, The Cauchy Criterion
(Sections 3.1, 3.2, 3.3, 3.4, 3.5 of the Text).

Unit III - Series (20 hours)

Introduction to Infinite Series, Absolute Convergence, Tests for Absolute Convergence, Tests for Non Absolute Convergence (Sections 3.7, 9.1, 9.2, 9.3
of the Text).

Unit IV - Continuous Functions (20 hours)

Continuous Functions, Combination of Continuous Functions, Continuous
Functions on Intervals (Sections 5.1, 5.2, 5.3 of the Text).
Text
R.G. Bartle and D.R. Sherbert, Introduction to Real Analysis (4th edition),
Wiley.

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{gathered} 12-07-2021 \\ \text { To } \\ 17-07-2021 \end{gathered}$	1	The real numbers - introduction
		2	Algebraic properties of real numbers
		3	Theorem
		4	Rational and Irrational numbers
		5	The order properties of real numbers
		6	Theorem
2	$\begin{gathered} 19-07-2021 \\ \text { To } \\ 24-07-2021 \end{gathered}$	7	Inequalities
		20 July	Bakrid- Holiday
		8	AM-GM inequality
		9	Bernoullis inequality
		10	Absolute value and the real line
		11	Class Test
3	$\begin{gathered} 26-07-2021 \\ \text { To } \\ 31-07-2021 \end{gathered}$	12	Triangle inequality
		13	The completeness property of real number
		14	Lemma
		15	Examples
		16	Applications of supremum property
		17	Archimedian property \& Corollary
4	$\begin{gathered} 02-08-2021 \\ \text { To } \\ 07-08-2021 \end{gathered}$	18	Intervals
		19	Nested interval property
		20	Theorem
		21	Periodic decimals
		22	Sequences- Definition
		23	The limit of a sequence
5	$\begin{gathered} 09-08-2021 \\ \text { To } \\ 14-08-2021 \end{gathered}$	24	Theorem
		25	Tails of sequences
		26	Theorem
		27	Limit theorems
		28	Theorem
		29	Examples
6	$\begin{gathered} 16-08-2021 \\ \text { To } \\ 21-08-2021 \end{gathered}$	30	Theorem
		31	Monotone Sequences
		32	Monotone convergence theorem
		19 August	Moharam/Onam Vacation

	$\begin{gathered} \hline \text { To } \\ 09-10-2021 \end{gathered}$	62	Test for absolute convergence
	$09-10-2021$	63	Examples
		64	Examples
		65	Raabes test
14	$\begin{gathered} 11-10-2021 \\ \text { To } \\ 16-10-2021 \end{gathered}$	66	Integral Test
		67	Examples
		68	Theorem
		14 October	Mahanavami/Study Leave
		15 October	Vijayadasami/ Study Leave
			Study Leave
15	$\begin{gathered} 18-10-2021 \\ \text { To } \\ 23-10-2021 \end{gathered}$		Study Leave
		19 October	Milad-i-Sherif/ Study Leave
			Study Leave
			IV Semester University Eeamination
			IV Semester University Eeamination
			IV Semester University Eeamination
16	$\begin{gathered} 25-10-2021 \\ \text { To } \\ 30-10-2021 \end{gathered}$		IV Semester University Eeamination
			IV Semester University Eeamination
			IV Semester University Eeamination
			IV Semester University Eeamination
			IV Semester University Eeamination
			IV Semester University Eeamination
17	$\begin{gathered} 01-11-2021 \\ \text { To } \\ 06-11-2021 \end{gathered}$		IV Semester University Eeamination
			IV Semester University Eeamination
		69	Theorem
		4 November	Diwali
		70	Theorem
		71	Class Test
18	$\begin{gathered} 08-11-2021 \\ \text { To } \\ \text { 13-11-2021 } \end{gathered}$	72	Continuous functions - introduction
		73	Theorem
		74	Theorem
		75	Examples
		76	Theorem
		77	Theorem
19	$\begin{gathered} 15-11-2021 \\ \text { To } \\ 19-11-2021 \end{gathered}$	78	Combinations of continuous functions
		79	Combinations of continuous functions
		80	Combinations of continuous functions
		81	Combinations of continuous functions
		82	Theorem
		83	Theorem

20	$\begin{gathered} 22-11-2021 \\ \text { To } \\ 26-11-2021 \end{gathered}$	84	Theorem
		85	Continuous functions on intervals
		86	Continuous functions on intervals
		87	Continuous functions on intervals
		88	Example
		89	Revision
21	$\begin{gathered} 29-11-2021 \\ \text { To } \\ 03-12-2021 \end{gathered}$	90	Class Test
			Internal Examination
22	$\begin{gathered} 06-12-2021 \\ \text { To } \\ 10-12-2021 \end{gathered}$		Internal Examination
			Study Leave
23	$\begin{gathered} 13-12-2021 \\ \text { To } \\ 17-12-2021 \end{gathered}$		Study Leave
			Study Leave
24	$\begin{gathered} 20-12-2021 \\ \text { To } \\ 24-12-2021 \end{gathered}$		Study Leave
			Study Leave
			Study Leave
			Christmas Vacation
			Christmas Vacation
25			Christmas Vacation

Subject Code:	5B07 MAT
Subject Name:	Abstract Algebra
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Anil M V

5B07 MAT: Abstract Algebra

Unit I (27 hours)

Groups and Subgroups - Binary Operations, Groups, Subgroups, Cyclic Groups (Sections 2, 4, 5, 6 of the Text).

Unit II (28 hours)

Groups of Permutations, Orbits, Cycles and the Alternating Groups, Cosets and Theorem of Lagrange (Sections 8, 9, 10 of the Text).(Proof of Theorem 9.15 omitted).

Unit III (20 hours)

Homomorphisms, Factor Groups (Sections 13, 14 of the Text).

Unit IV (15 hours)

Rings and Fields, Integral Domains (Sections 18, 19 of the Text).
(Problems involving direct products are omitted from all sections)

Text

J.B. Fraleigh, A First Course in Abstract Algebra (7th edition), Pearson.

References

1. I.N. Herstein, Topics in Algebra (2nd edition), Wiley
2. M. Artin, Algebra, Prentice Hall
3. D. Chaterjee, Abstract Algebra (2nd edition), PHI
4. J.A. Gallian, Contemporary Abstract Algebra, Narosa
5. P.B. Bhatacharya, S.K. Jain and S.R. Nagpaul, Basic Abstract Algebra (2nd edition), Cambridge University Press.

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{gathered} 12-07-2021 \\ \text { To } \\ 17-07-2021 \end{gathered}$	1	Binary operations
		2	Examples of binary operations
		3	Examples of binary operations
		4	Commutative and associative operations
		5	Tables
		6	Examples
2	$\begin{gathered} 19-07-2021 \\ \text { To } \\ 24-07-2021 \end{gathered}$	7	Groups
		20 July	Bakrid- Holiday
		8	Examples
		9	Examples
		10	Examples
		11	Properties of groups
3	$\begin{gathered} 26-07-2021 \\ \text { To } \\ 31-07-2021 \end{gathered}$	12	Properties of groups
		13	Group tables
		14	Subgroups
		15	Theorem
		16	Examples of subgroups
		17	Theorem
4	$\begin{gathered} 02-08-2021 \\ \text { To } \\ 07-08-2021 \end{gathered}$	18	Cyclic groups
		19	Examples
		20	Theorem
		21	Order of an element
		22	Cyclic group and Generators
		23	Theorem
5	$\begin{gathered} 09-08-2021 \\ \text { To } \\ 14-08-2021 \end{gathered}$	24	Structure of cyclic groups
		25	Subgroups of finite cyclic groups
		26	Examples
		27	Class test
		28	Permutations-definition and examples
		29	Permutation groups
6	$\begin{gathered} 16-08-2021 \\ \text { To } \\ 21-08-2021 \end{gathered}$	30	Examples
		31	Symmetric group
		32	Theorem
		19 August	Moharam/Onam Vacation
		20 August	Onam Vacation

No of Weeks	Dates	Session	Topic
		21 August	Onam Vacation
7	$\begin{gathered} 23-08-2021 \\ \text { To } \\ 28-08-2021 \end{gathered}$	23 August	Onam Vacation
		24 August	Onam Vacation
		25 August	Onam Vacation
		26 August	Onam Vacation
		27 August	Onam Vacation
		28 August	Onam Vacation
8	$\begin{aligned} & 30-08-2021 \\ & \text { To } \\ & 04-09-2021 \end{aligned}$	30 August	Onam Vacation
		33	Cayley's theorem
		34	Examples
		35	Orbits-definition and examples
		36	Examples
		37	Cycles-definition and examples
9	$\begin{gathered} 06-09-2021 \\ \text { To } \\ 11-09-2021 \end{gathered}$	38	Disjoint cycles
		39	Theorem
		40	Permutation as a product of disjoint cycles
		41	Transpositions
		42	Theorem
		43	Even and odd permutations
10	$\begin{gathered} 13-09-2021 \\ \text { To } \\ 18-09-2021 \end{gathered}$	44	Theorem
		45	Theorem
		46	Examples
		47	Alternating group-definition and examples
		48	Assignment
		49	Cosets
11	$\begin{gathered} 20-09-2021 \\ \text { To } \\ 25-09-2021 \end{gathered}$	50	Left and right cosets
		21 September	Sree Narayana Guru Samadhi
		51	Examples
		52	Theorem of Lagrange
		53	Examples
		54	Definition-index of a subgroup
12	$\begin{gathered} 27-09-2021 \\ \text { To } \\ 02-10-2021 \end{gathered}$	55	Theorem
		56	Homomorphisms
		57	Examples
		58	Evaluation homomorphism
		59	Theorem
		2 October	Gandhi Jayanthi
13	04-10-2021	60	Theorem

Subject Code:	5B08 MAT
Subject Name:	Differential Equations and Laplace Transforms
No. of Credits:	3
No. of Contact Hours:	$\mathbf{7 2}$
Hours per Week:	5
Name of the Teacher:	Prija \mathbf{V}

5B08 MAT: Differential Equations and Laplace Transforms

Unit I - First Order ODEs (25Hours)

First Order ODEs: Basic concepts (Modelling excluded), Separable ODEs(Modelling excluded), Exact ODEs. Integrating factors, Linear ODEs, Bernoulli equation (except Population Dynamics), Orthogonal Trajectories, Existence and uniqueness of solutions (Sections 1.1, 1.3, 1.4, 1.5, 1.6, 1.7 in Chapter 1of the Text).

Unit II - Second-Order Linear ODEs (22 Hours)

Second-Order Linear ODEs: Homogeneous Linear ODEs of Second Order, Homogeneous Linear ODEs with Constant Coefficients, Differential Operators, Euler-Cauchy Equations, Statement of Existence and Uniqueness theorem for initial value problems, linear independence of solutions, Wronskian, general solution, Nonhomogeneous ODEs, Method of undetermined coefficients, Solution by Variation of Parameters (Sections 2.1, 2.2, 2.3, 2.5, 2.6, 2.7, 2.10 in Chapter 2 of the Text).

Unit III - Laplace Transforms ($\mathbf{2 5}$ hours)

Laplace Transform, Inverse Transform, Linearity. s-Shifting, Transforms of Derivatives and Integrals. ODEs, Unit Step Function. t-Shifting, Short Impulses, Dirac's Delta Function, Partial Fractions, Convolution, Integral Equations, Differentiation and Integration of Transforms (Sections 6.1 to 6.6 in Chapter 6 of the Text).

Texts

E. Kreyzig, Advanced Engineering Mathematics, 10th Edition, John

Wiley

References:

1. S.L. Ross, Differential Equations, 3rd Edition, Wiley.
2. G. Birkhoff and G.C. Rota, Ordinary Differential Equations, 3rd Edition, Wiley and Sons
3. E.A. Coddington, An Introduction to Ordinary Differential Equtions, Printice Hall
4. W.E. Boyce and R.C. Diprima, Elementary Differential Equations and Boundary Value Problems, 9th Edition, Wiley.

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{aligned} & 12-07-2021 \\ & \text { To } \\ & 17-07-2021 \end{aligned}$	1	Unit I: First Order ODEs-Introduction
		2	Basic concepts
		3	Theorems based on Existence and uniquenes of solution.
		4	Separable ODEs, Examples
		5	Exercise questions.
2	$\begin{gathered} 19-07-2021 \\ \text { To } \\ 24-07-2021 \end{gathered}$	6	Equations reducible to separable form-examples.
		20 July	Bakrid- Holiday
		7	Exact ODEs- examples, Exercise questions.
		8	Integrating factors, Non-exact differential equations.
		9	Exercise questions.
3	$\begin{gathered} 26-07-2021 \\ \text { To } \\ 31-07-2021 \end{gathered}$	10	Exercise questions.
		11	Class Test.
		12	Linear ODEs-Examples
		13	Exercise questions.
		14	Bernoulli equation-Examples
4	$\begin{gathered} 02-08-2021 \\ \text { To } \\ 07-08-2021 \end{gathered}$	15	Orthogonal trajectories
		16	Exercise questions.
		17	Class test.
		18	Exercise questions.
		19	Assignment.
5	$\begin{aligned} & 09-08-2021 \\ & \text { To } \\ & 14-08-2021 \end{aligned}$	20	Existence and uniqueness of solutions
		21	Exercise questions.
		22	Class test.
		23	Second-Order Linear ODEs- Examples
		24	Homogeneous Linear ODEs of Second Order- Examples
6	$\begin{gathered} 16-08-2021 \\ \text { To } \\ 21-08-2021 \end{gathered}$	25	Homogeneous Linear ODEs with Constant CoefficientsExamples
		26	Exercise questions.
		27	Exercise questions.
		19 August	Moharam/Onam Vacation
		20 August	Onam Vacation
		21 August	Onam Vacation
7	23-08-2021	23 August	Onam Vacation
		24 August	Onam Vacation

| No of |
| :---: | :---: | :---: | :---: |
| Weeks | Dates \quad Session \quad Topic

Subject Code:	5B09 MAT
Subject Name:	Vector Calculus
No. of Credits:	4
No. of Contact Hours:	90
Hours per Week:	6
Name of the Teacher:	Noble Philip

5B09 MAT: Vector Calculus

Unit I (25 Hours)

Geometry of space and motion in space : Lines and planes in space, curves in space and their tangents, arc length in space, curvature and normal vector of a curve, tangential and normal components of acceleration
(Sections 12.5, 13.1, 13.3, 13.4, 13.5 of the Text).

Unit II (25 Hours)

Partial derivatives : Directional derivatives and gradient vectors, Tangent planes and differentials, Extreme values and saddle points, Lagrange multipliers, Partial derivatives with constrained variables, Taylor's formula for two variables
(Sections 14.5, 14.6, 14.7, 14.8, 14.10 of the Text).

Unit III (20 Hours)

Integration in vector fields I :Line integrals, Vector fields and line integrals: work, circulation, flux, Path independence, conservative fields and potential functions, Green's theorem in the plane (Sections 16.1, 16.2, 16.3, 16.4 of the Text).

Unit IV (20 Hours)

Integration in vector fields II : Surfaces and area, surface integrals, Stokes' theorem (theorem without proof) (paddle wheel interpretation of $\nabla \times F$ is excluded), the Divergence Theorem (theorem without proof) (Gauss' law: one of the four great laws of Electromagnetic Theory, continuity equation of hydrodynamics, unifying the integral theorems are excluded)
(Sections 16.5, 16.6, 16.7, 16.8 of the Text).

Text

G.B, Thomas Jr., M.D. Weir and J.R. Hass, Thomas' Calculus (12th edition), Pearson Education

References

1. E. Kreyzig, Advanced Engineering Mathematics (10th Edition), Wiley 2. H. F. Davis and A. D. Snider, Introduction to Vector Analysis (6th Edition), Universal Book Stall, New Delhi.
2. F. W. Bedford and T. D. Dwivedi, Vector Calculus, McGraw Hill Book Company
3. S.S. Sastry, Engineering Mathematics , Vol 2 (4th edition), PHI
4. B.S. Grewal, Higher Engineering Mathematics (43rd edition), Khanna Publishers

TEACHING SCHEDULE

No of Weeks	Dates	Session	Topic
1	$\begin{aligned} & 12-07-2021 \\ & \text { To } \\ & 17-07-2021 \end{aligned}$	1	Geometry of space and motion in space
		2	Introduction
		3	Examples
		4	Lines and planes in space
		5	Lines and planes in space
		6	Problems
2	$\begin{aligned} & 19-07-2021 \\ & \text { To } \\ & 24-07-2021 \end{aligned}$	7	Problems
		20 July	Bakrid- Holiday
		8	Curves in space and their tangents
		9	Curves in space and their tangents
		10	Examples
		11	Examples
3	$\begin{gathered} 26-07-2021 \\ \text { To } \\ 31-07-2021 \end{gathered}$	12	Arc length in space
		13	Arc length in space
		14	Problems
		15	Problems
		16	Curvature and normal vector of a curve
		17	Curvature and normal vector of a curve
4	$\begin{gathered} 02-08-2021 \\ \text { To } \\ 07-08-2021 \end{gathered}$	18	Problems
		19	Problems
		20	Problems
		21	Tangential and normal components of acceleration
		22	Tangential and normal components of acceleration
		23	Class Test
5	$\begin{aligned} & 09-08-2021 \\ & \text { To } \\ & 14-08-2021 \end{aligned}$	24	Partial derivatives
		25	Partial derivatives
		26	Examples
		27	Examples
		28	Directional derivatives and gradient vectors
		29	Directional derivatives and gradient vectors
6	$\begin{aligned} & 16-08-2021 \\ & \text { To } \\ & 21-08-2021 \end{aligned}$	30	Directional derivatives and gradient vectors
		31	Problems
		32	Problems
		19 August	Moharam/Onam Vacation
		20 August	Onam Vacation

No of Weeks	Dates	Session	Topic
		21 August	Onam Vacation
7	$\begin{gathered} 23-08-2021 \\ \text { To } \\ 28-08-2021 \end{gathered}$	23 August	Onam Vacation
		24 August	Onam Vacation
		25 August	Onam Vacation
		26 August	Onam Vacation
		27 August	Onam Vacation
		28 August	Onam Vacation
8	$\begin{aligned} & 30-08-2021 \\ & \text { To } \\ & 04-09-2021 \end{aligned}$	30 August	Onam Vacation
		33	Tangent planes and differentials
		34	Tangent planes and differentials
		35	Problems
		36	Problems
		37	Extreme values and saddle points
9	$\begin{gathered} 06-09-2021 \\ \text { To } \\ 11-09-2021 \end{gathered}$	38	Extreme values and saddle points
		39	Problems
		40	Problems
		41	Assignment
		42	Seminar
		43	Seminar
10	$\begin{gathered} 13-09-2021 \\ \text { To } \\ 18-09-2021 \end{gathered}$	44	Lagrange multipliers
		45	Lagrange multipliers
		46	Problems
		47	Problems
		48	Problems
		49	Partial derivatives with constrained variables
11	$\begin{gathered} 20-09-2021 \\ \text { To } \\ 25-09-2021 \end{gathered}$	50	Partial derivatives with constrained variables
		21 September	Sree Narayana Guru Samadhi
		51	Problems
		52	Problems
		53	Taylor's formula for two variables
		54	Taylor's formula for two variables
12	$\begin{gathered} 27-09-2021 \\ \text { To } \\ 02-10-2021 \end{gathered}$	55	Problems
		56	Class Test
		57	Integration in vector fields I
		58	Integration in vector fields I
		59	Examples
		2 October	Gandhi Jayanthi
13	04-10-2021	60	Problems

