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INTRODUCTION 
 

 

A proper coloring of a graph is an assignment of colors to the vertices of the graph so that  

no two adjacent vertices have the same color. 

 

                     Usually we drop the word “proper” unless other types of coloring are also under  

discussion. Of course, the “colors” don’t have to be actual colors ; may can be any distinct  

labels - integers ,for examples , if a graph is not connected ,  each connected component can  

be colored independently; except where otherwise noted , we assume graphs are  

connected. We also assume graphs are simple in this section. Graph coloring has many  

applications in addition to its intrinsic interest. 

 

                        In the same way the most important concept of graph coloring is utilized in  

resource allocation, scheduling. Also, paths, walks and circuits in graph theory are used in  

tremendous applications say travelling salesman problem, database design concepts,  

resource networking. 

 

                       This project deals with coloring which is one of the most important topics in  

graph theory. In this project there are three chapters. First chapter is coloring . The second  

chapter is chromatic number. The last chapter deals with application of graph coloring. 
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BASIC CONCEPTS 

 

1. GRAPH 

      A graph is an ordered triplet. G=(V(G), E(G), I(G)); V(G) is a non empty set, E(G) is a set 

disjoint from V(G) and I(G) is an incidence map that associates each element of E(G) and  

unrecorded pair of element of V(G). The elements of V(G) are called vertices (or nodes or  

points) of G and the elements of E(G) are Called edges or lines of G. 

 

2. MULTIPLE EDGE / PARALLEL EDGE  

       A set of 2 or more edges of a graph G is called a multiple edge or parallel edge if they  

have the same  end vertices. 

 

3. LOOP 

       An edge for which the 2 end vertices are same is called a loop. 

 

4. SIMPLE GRAPH 

      A graph is simple if it has no loop and no multiple edges. 

 

5. DEGREE 

        Let G be a graph and v € V the number of edge incident at V in G is called the degree or  

vacancy of the vertex v in G. 
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CHAPTER - 1 
 

 

COLORING 
 

              

    Graph coloring is nothing but a simple way of labeling graph components such as  

vertices , edges and regions under some constraints. In a graph, no two adjacent vertices, 

adjacent edges , or adjacent regions are colored with minimum number of colors .This  

number is called the chromatic number and the graph is called properly colored graph. 

                                                  In graph theory coloring is a special case of graph labeling; it is  

an assignment of labels traditionally called “colors” to elements of a graph subject to certain  

constraints. In it simplest form, it is a way of coloring the vertices of a graph such that no  

two adjacent vertices share the same color, it is called vertex coloring. Similarly, edge 

coloring assigns a color to each edge so that no two adjacent edges share the common  

color. 

                                            While graph coloring , the constraints that are set on the graph are  

colors , order of coloring , the way of assigning color , etc.  A coloring is given to a vertex or a  

particular region . Thus, the vertices or regions having same colors form independent sets. 
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VERTEX COLORING 

                     Vertex coloring is an assignment of colors to the vertices of a graph  ‘G ’  such  

that no two adjacent vertices have the same color .Simply put , no two vertices of an edge  

should be of the same color. 

                                          The most common type of vertex coloring seeks to minimize the  

number of colors for a given graph . Such a coloring is known as a minimum vertex coloring , 

and the minimum number of colors which with the vertices of a graph may be colored is  

called the chromatic number .  

 

CHROMATIC NUMBER: 

                             The minimum number of colors required for vertex coloring  of  graph ‘ G ’   

is called as the chromatic number of G , denoted by   X (G) . 

X(G) = 1  iff  ‘ G ’   is a null graph. If  ‘G ’  is not a null graph , then X(G) ≥ 2. 

 

EXAMPLES; 

 

1.                                                                                            2.      

 

 

 

 

  

       Null Graph ( X (G)  = 1 )                                                          Not Null Graph  ( X (G) = 2 ) 
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EDGE COLORING    

                    An edge coloring of a graph G is a coloring of the edges of G such that adjacent  

edges ( or the edges bounding different regions ) receive different colors. An edge coloring 

containing the smallest possible number of colors for a given graph is known as a minimum  

edge coloring. 

                          The edge chromatic number gives the minimum number of colours with which 

graph’s edges can be colored. 

 

 

 

CHROMATIC INDEX 

                     The minimum number of colors required for proper edge coloring of graph is  

called chromatic index. 

A complete graph is the one in which each vertex is directly connected with all  

other vertices with an edge. If the number of vertices of a complete graph is n, then the 

 chromatic index for an odd number of vertices will be n and the chromatic index for even  

number of vertices will be n-1. 
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EXAMPLES; 

1.    

 

 

 

 

 

 

          The given graph will require 3 unique colors so that no two incident edges have the  

Same color. So its chromatic index will be 3. 

 

2.   

 

 

 

 

            The given graph will require 2 unique colors so that no two incident edges have  

the same color. So its chromatic index will be 2. 
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CHAPTER 2 

Chromatic Number 

 

The chromatic number of a graph is the smallest number of colors needed to color the vertices  

of so that no two adjacent vertices share the same color. That is the smallest value of possible 

to obtain a k-coloring. 

• Graph Coloring is a process of assigning colors to the vertices of a graph. 

• It ensures that no two adjacent vertices of the graph are colored with the same color. 

• Chromatic Number is the minimum number of colors required to properly color any graph. 

 

 

Graph Coloring Algorithm 

  

• There exists no efficient algorithm for coloring a graph with minimum number of colors. 

  

However, a following greedy algorithm is known for finding the chromatic number of any given 

graph. 

 

 

Greedy Algorithm 

  

Step-01: 

  

Color first vertex with the first color. 
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 Step-02: 

 Now, consider the remaining (V-1) vertices one by one and do the following- 

 

• Color the currently picked vertex with the lowest numbered color if it has not been used to 
color any of its adjacent vertices. 

• If it has been used, then choose the next least numbered color. 

• If all the previously used colors have been used, then assign a new color to the currently 
picked vertex. 

  

 

Problems Based On Finding Chromatic Number of a Graph 

  

Problem-01: 

  

Find chromatic number of the following graph- 

  

 

 

 

 

 



9 
 

 

Solution- 

  

Applying Greedy Algorithm, we have 

Vertex a B C d e f 

Color C1 C2 C1 C2 C1 C2 

  

From here, 

• Minimum numbers of colors used to color the given graph are 2. 

• Therefore, Chromatic Number of the given graph = 2. 

  

The given graph may be properly colored using 2 colors as shown below- 
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Problem-02: 

  

Find chromatic number of the following graph- 

  

 

 Solution- 

  

Applying Greedy Algorithm, we have- 

  

Vertex a b C d e f 

Color C1 C2 C2 C3 C3 C1 

  

From here, 

• Minimum numbers of colors used to color the given graph are 3. 

• Therefore, Chromatic Number of the given graph = 3. 
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The given graph may be properly colored using 3 colors as shown below- 

  

 

 

Chromatic Number of Graphs 

  

Chromatic Number of some common types of graphs are as follows- 

  

1. Cycle Graph- 
  

• A simple graph of ‘n’ vertices (n>=3) and ‘n’ edges forming a cycle of length ‘n’ is called as a 
cycle graph. 

• In a cycle graph, all the vertices are of degree 2. 

  

Chromatic Number 

• If number of vertices in cycle graph is even, then its chromatic number = 2. 

• If number of vertices in cycle graph is odd, then its chromatic number = 3. 
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Examples- 
 

 

2. Planar Graphs- 
 
A planar graph is a graph that can be embedded in the plane, that is it can be drawn on the 
plane in such a way that its edges intersect only at their endpoint. In other words, it can be 
drawn in such a way that no edges cross each other. 

  



13 
 

A Planar Graph is a graph that can be drawn in a plane such that none of its edges cross each 
other. 

 

Chromatic Number 

Chromatic Number of any Planar Graph is less than or equal to 4 

  

Examples- 

+  

• All the above cycle graphs are also planar graphs. 

• Chromatic number of each graph is less than or equal to 4. 

 

 

https://www.gatevidyalay.com/planar-graphs/
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3. Complete Graphs- 

  

• A complete graph is a graph in which every two distinct vertices are joined by exactly one 
edge. 

• In a complete graph, each vertex is connected with every other vertex. 

• So to properly it, as many different colors are needed as there are number of vertices in the 
given graph. 

  

Chromatic Number 

Chromatic Number of any Complete Graph 

= Number of vertices in that Complete Graph 

  

Examples- 
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4. Bipartite Graphs- 
 
 
A bipartite graph is a graph whose vertices can be divided into two disjoint and independent 
sets U and V such that every edge connects a vertex in U to one in V. Vertex sets U and V are 
usually called the parts of the graph. 

  

• A Bipartite Graph consists of two sets of vertices X and Y. 

• The edges only join vertices in X to vertices in Y, not vertices within a set. 

 

Chromatic Number 

Chromatic Number of any Bipartite Graph 

= 2 

  

Example- 

  

 

https://www.gatevidyalay.com/bipartite-graphs/
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5. Trees- 

  

A tree is an undirected graph in which any two vertices are connected by exactly one path, or 
equivalently a connected acyclic undirected graph. 

 

• A Tree is a special type of connected graph in which there are no circuits. 

• Every tree is a bipartite graph. 

• So, chromatic number of a tree with any number of vertices = 2. 

  

Chromatic Number 

Chromatic Number of any tree 

= 2 

  

Examples- 

  

 

 

https://www.gatevidyalay.com/tree-data-structure-tree-terminology/
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CHAPTER-3 

APPLICATIONS OF GRAPH COLORING 

 

1) Making Schedule or Time Table: 

                         Suppose we want to make an exam schedule for a university. We have list 

different subjects and students enrolled in every subject. Many subjects would have common 

students (of same batch, some backlog students, etc). How do we schedule the exam so that no 

two exams with a common student are scheduled at same time? How many minimum time 

slots are needed to schedule all exams? This problem can be represented as a graph where 

every vertex is a subject and an edge between two vertices mean there is a common student. 

So this is a graph coloring problem where minimum number of time slots is equal to the 

chromatic number of the graph.  

 

2) Mobile Radio Frequency Assignment:  

                       When frequencies are assigned to towers, frequencies assigned to all towers at the 

same location must be different. How to assign frequencies with this constraint?  What is the 

minimum number of frequencies needed?  This problem is also an instance of graph coloring 

problem where every tower represents a vertex and an edge between two towers represents 

that they are in range of each other.  

 

3) Register Allocation: 

                  In compiler optimization, register allocation is the process of assigning a large number 

of target program variables onto a small number of CPU registers. This problem is also a graph 

coloring problem. 

 

4) Sudoku: 

                    Sudoku is also a variation of Graph coloring problem where every cell represents a 

vertex. There is an edge between two vertices if they are in same row or same column or same 

block.  
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5)     Map Coloring: 

                     Geographical maps of countries or states where no two adjacent cities cannot be 

assigned same color. Four colors are sufficient to color any map. 

 

 

6)   Bipartite Graphs:  

                   We can check if a graph is bipartite or not by coloring the graph using two colors. If a 

given graph is 2-colorable, then it is Bipartite, otherwise not. See this for more details. 

 

Explanation; 

 

Algorithm: 

              A bipartite graph is possible if it is possible to assign a color to each vertex such that no 
two neighbour vertices are assigned the same color. Only two colors can be used in this 
process. 

 

 

 

Steps: 

1. Assign a color (say red) to the source vertex. 

2. Assign all the neighbours of the above vertex another color (say blue). 

3. Taking one neighbour at a time, assign all the neighbour's neighbours the color red. 

4. Continue in this manner till all the vertices have been assigned a color. 

5. If at any stage, we find a neighbour which has been assigned the same color as that of the 

current vertex, stop the process. The graph cannot be colored using two colors. Thus the graph 

is not bipartite. 
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Example: 
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CONCLUSION 

 

This project aims to provide a solid background in the basic topics of graph coloring. Graph 

coloring problem is to assign colors to certain elements of a graph subject to certain 

constraints. The nature of coloring problem depends on the number of colors but not on what 

they are. 

                    The study of this topic gives excellent introduction to the subject called “Graph 

Coloring”. 

This project includes two important topics such as vertex coloring and edge coloring and came 

to know about different ways and importance of coloring. 

                    Graph coloring enjoys many practical applications as well as theoretical challenges. 

Besides the applications, different limitations can also be set on the graph or on the away a color 

is assigned or even on the color itself. It has been reached popularity with the general public in 

the form of the popular number puzzle Sudoku and it is also use in the making of time 

management which is an important application of coloring. So graph coloring is still a very 

active field of research.  
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INTRODUCTION 

 

 In recent years, Graph Theory has established itself as an important 

mathematical tool in a wide variety of subjects, ranging from Operational 

Research and Chemistry to Genetics and Linguistics, and from Electrical 

Engineering and Geography to Sociology and Architecture. At the same time, it 

has also emerged as a worthwhile mathematical discipline in its own right. 

 A great mathematician, Euler become the Father of Graph Theory, when 

in 1736, he solved a famous unsolved problem of his days, called Konigsberg 

Bridge Problem. This is today, called as the First Problem of the Graph theory. 

This problem leads to the concept of the planar graph as well as Eulerian Graphs, 

while planar graphs were introduced for practical reasons, they pose many 

remarkable mathematical properties. In 1936, the psychologist Lewin used planar 

graphs to represent the life space of an individual. 
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Chapter 1 

BASIC CONCEPTS 

 

Graph 

 A graph is an ordered triple 𝐺 = {𝑉(𝐺), 𝐸(𝐺), 𝐼𝐺} where 𝑉(𝐺) is a non-

empty set, 𝐸(𝐺) is a set disjoint from 𝑉(𝐺) and 𝐼(𝐺) is an incidence map that 

associates each element of 𝐸(𝐺) and unordered pair of elements of 𝑉(𝐺). The 

elements of 𝑉(𝐺) are called vertices (or nodes or points) of 𝐺 and the element 

of 𝐸(𝐺) are called edges or lines of 𝐺. 

Example: 

 

Here  𝑉(𝐺)  =  {𝑣1, 𝑣2, 𝑣3, 𝑣4} 

 𝐸(𝐺)  =  {𝑒1, 𝑒2, 𝑒3, 𝑒4} 

 𝐼𝐺(𝑒1)  =  {𝑣1, 𝑣2} or {𝑣2, 𝑣1} 

 I𝐺(𝑒2)  =  {𝑣2, 𝑣3} or {𝑣3, 𝑣2} 

 𝐼𝐺(𝑒3)  =  {𝑣3, 𝑣4} or {𝑣4, 𝑣3} 

 𝐼𝐺(𝑒4)  =  {𝑣4, 𝑣1} or {𝑣1, 𝑣4} 

Multiple edges 

A set of two or more edges of a graph 𝐺 is called multiple edges or parallel 

edges if they have the same end vertices. 
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Loop 

 An edge for which the two end vertices are same is called a loop. 

 

Here {𝑒1, 𝑒2, 𝑒3, 𝑒4} form the parallel edges. 

𝑒7 is the Loop. 

Simple Graph 

 A graph is simple if it has no loops and no multiple edges. 

 

Finite & Infinite Graphs 

 A graph is called finite if both 𝑉(𝐺) & 𝐸(𝐺) are finite. A graph that is not 

finite is called infinite graph. 

 Adjacent Vertices 

 Two vertices 𝑢 and 𝑣 are said to be adjacent vertices if and only if there is 

an edge with 𝑢 and 𝑣 as its end vertices. 
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Adjacent Edges 

 Two distinct edges are said to be adjacent edges if and only if they have a 

continuous end vertex. 

Complete Graph 

 A simple graph 𝐺 is said to be complete if every pair of distinct vertices of 

𝐺 are adjacent in 𝐺. A complete graph with n vertices is denoted by 𝐾𝑛. 

 

Bipartite Graph 

 A graph is bipartite if its vertex set can be partitioned into two non-empty 

subsets 𝑋 and 𝑌 such that each edge of 𝐺 has one end in 𝑋 and the other in 𝑌. The 

pair (𝑋, 𝑌) is called a bipartition of the bipartite graph 𝐺. The bipartite graph 𝐺 

with bipartition (𝑋, 𝑌) denoted by 𝐺 (𝑋, 𝑌). 
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Here  𝑉(𝐺)  =  {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} 

The Bipartition is  

 𝑋 =  {𝑣1, 𝑣2, 𝑣3} 

 𝑌 =  {𝑣4, 𝑣5, 𝑣6, 𝑣7} 

Complete Bipartite Graph 

 A simple bipartite graph 𝐺 (𝑋, 𝑌) is complete if each vertex 𝑋 is adjacent 

to all the vertices of 𝑌. 

 

Here  𝑋 =  {𝑣1, 𝑣2, 𝑣3} 

 𝑌 =  {𝑣4, 𝑣5} 

Subgraph 

A graph 𝐻 is called subgraph of 𝐺 if 𝑉(𝐻) ⊆ 𝑉(𝐺), 𝐸(𝐻) ⊆ 𝐸(𝐺) and IH 

is the restriction of 𝐼𝐺  to 𝐸(𝐻) [ie, 𝐼𝐻(𝑒) = 𝐼𝐺(𝑒) whenever 𝑒 ∈ 𝐸(𝐻). 
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Degrees of Vertices 

 The number of edges incident with vertex 𝑉 is called degree of a vertex 

or valency of a vertex and it is denoted by 𝑑(𝑣). 

Isomorphism of Graph 

 A graph isomorphism from a graph 𝐺 to a graph 𝐻 is a pair (𝜙, 𝜃), where 

𝜙 ∶ 𝑉(𝐺) → 𝑉(𝐻) and 𝜃 ∶ 𝐸(𝐺) → 𝐸(𝐻) are bijection with a property that 

𝐼𝐺(𝑒) = {𝑢, 𝑣} and 𝐼𝐻(𝜃(𝑒)) = {𝜙(𝑢), 𝜙(𝑣)}. 

Walk 

 A walk in a graph 𝐺 is an alternative sequence 𝑊 =

𝑣0𝑣1𝑒1𝑣2𝑒2 … 𝑣𝑛𝑒𝑛 vertices and edges, beginning and ending with vertices where  

𝑣0 is the origin and 𝑣𝑛 is the terminus of 𝑊. 

 

𝑊 = 𝑣6𝑒8𝑣1𝑒1𝑣2𝑒2𝑣3𝑒3𝑣2𝑒1𝑣1 
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Closed Walk 

 A walk to begin and ends at the same vertex is called a closed walk. That 

is, the walk 𝑊 is closed if 𝑣0 = 𝑣𝑛. 

Open Walk 

 If the origin of the walk and terminus of the walk are different vertices, 

then it is called an open walk. 

Trail 

A walk is called a trail if all the edges in the walk are distinct. 

Path 

 A walk is called a path if all the vertices are distinct. 

Example: 

 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒6𝑣1 → A trail 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒3𝑣3 → A path 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒3𝑣3𝑒5𝑣1 → A trail, but not a path 

Euler’s Theorem 

 The sum of the degrees of the vertices of a graph is equal to the twice the 

number of edges. 

ie: ∑ 𝑑(𝑣𝑖) = 2𝑚𝑛
𝑖=1  
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Isomorphic Graph 

 𝐼𝐻(𝜃(𝑒)) = {𝜙(𝑢), 𝜙(𝑣)} 

A graph  𝐺1 = (𝑉1, 𝐸1) is said to be isomorphic to graph 𝐺2 = (𝑉2, 𝐸2) if 

there is a one-to-one correspondence between the edge sets 𝐸1 and 𝐸2 in such a 

way that if 𝑒1 is an edge with end vertices 𝑢1 and 𝑣1  in 𝐺1 then the corresponding 

edge 𝑒2 in 𝐺2 has its end vertices 𝑢2 and 𝑣2 in 𝐺2. This correspondence is called 

a graph isomorphism. 

Example: 

 𝐺 =    

 𝐻 =   

 

 

 

ie: G and H are isomorphic. 

Components 

 A connected component of a graph is a maximal connected subgraph. The 

term is also used for maximal subgraph or subset of a graph 's vertices that have 

some higher order of connectivity, including bi-connected components, tri-

connected components and strongly connected components. 

Tree 

 A connected graph without cycles is called a tree. 

Vertex Cut 

 Let 𝐺 be a connected graph. The set 𝑉՛ subset of 𝑉(𝐺) is called a Vertex 

cut of 𝐺, if 𝐺 − 𝑉՛ is a disconnected graph. 
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Cut Vertex 

 If 𝑉՛ = {𝑣} is a Vertex cut of the connected Graph 𝐺, then the vertex 𝒗 is 

called a Cut vertex. 

Edge Cut 

 Let 𝐺 be a non-trivial connected graph with vertex set 𝑉 and let 𝑆 be a non-

empty subset of 𝑉 and 𝑆̅ = 𝑉 − 𝑆. Let 𝐸՛ = [𝑆, 𝑆̅] denote the set of all edges of 𝐺 

that have one end vertex is 𝑆 and the other is 𝑆̅. Then 𝐺 − 𝐸՛ is a disconnected 

graph and 𝐸՛ = [𝑆, 𝑆̅] is called an edge cut of 𝐺. 

Cut Edge 

 If 𝐸՛ = {𝑒} is an edge cut of 𝐺 then 𝑒 is called a cut edge of 𝐺. 

Block 

 A block is a Connected graph without any cut vertices. 

Eg:  

  

Graph 𝐺 Blocks of 𝐺 
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Chapter 2 

PLANAR GRAPHS 

 

Plane Graph 

 A plane graph is a graph drawn in the plane, such a way that any pair of 

edges meet only at their end vertices.  

Example: 

 

Planar Graph 

 A planar graph is a graph which is isomorphic to a plane graph, ie: it can 

be drawn as a plane graph. 

A plane graph is a graph that can be drawn in the plane without any edge crossing. 
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Example of Planar graph: 

 

Planar Representation 

 The pictorial representation of a planar graph as a plane graph is called a 

planar representation. 

Eg: Is Q3 shown below, planar? 

 

The graph Q3 

Planar representation of Q3 is: 
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Jordan Curve 

 A Jordan Curve in the plane is a continuous non-self-intersecting curve 

where Origin and Terminals coincide. 

Example: 

 

Jordan Curves 

 

Non-Jordan Curves 

Remark 

 If J is a Jordan Curve in the plane, then the part of the plane enclosed by J 

is called interior of J and is denoted by ‘int J’. We exclude from ‘int J’ the points 

actually lying on J. Similarly, the part of the plane lying outside J is called the 

exterior of J and is denoted by ‘ext J’. 

Example: 

 

Arc connecting point 𝑥 in int J with point 𝑦 in ext J. 
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Theorem 

 Let J be a Jordan Curve, if 𝑥 is a point in int J and 𝑦 is a point in ext J then 

any line joining 𝑥 to 𝑦 must meet J at some point, ie: must cross J. this is called 

Jordan Curve Theorem. 

Boundary 

 The set of edges that bound a region is called its boundary. 

Definition 

 A graph which is not planar is known as non-planar graph or a graph that 

cannot be drawn in the plane without any edge crossing is known as non-planar 

graph. 

 

 

Theorem 

K5  is nonplanar: 

 Every drawing of the complex graph K5 in the plane (or sphere) contains 

at least one edge crossing. 

Proof: 

 Label the vertices 0, 1, 2, 3, 4. By the Jordan Curve theorem any drawing of the 

cycle (1, 2, 3, 4, 1) separates the plane into two regions. Consider the region with 



14 
 

vertex 0 in its interior as the ‘inside’ of the circle. By the Jordan Curve theorem, 

the edges joining vertex 0 to each of its vertices 1, 2, 3 and 4 must also lie entirely 

inside the cycle, as illustrated below. 

 

Drawing most of the K5 in the plane 

Moreover, each of the 3-cycles {0, 1, 2, 0}, {0, 2, 3, 0}, {0, 3, 4, 0} and {0, 4, 1, 0} 

also separates the plane and hence the edges (2, 4) must also lie to the exterior of 

the cycle {1, 2, 3, 4} as shown. It follows that the cycle formed by edges (2, 4), 

(4, 0) and (0, 2) separates the vertices 1 and 3, again by Jordan Curve theorem. 

Thus, it is impossible to draw edge (1, 3) without crossing an edge of that cycle. 

So, it is proven that the drawing of the K5 in the plane contains at least one edge-

crossing.  

Theorem 

 K33 is nonplanar: 

 Every drawing of the complete bipartite graph K33 in the plane (or sphere) 

contains at least one edge crossing. 

Proof: 

 Label the vertices of one partite set 0, 2, 4 and of the order 1, 3, 5. By the 

Jordan Curve theorem, cycle {2, 3, 4, 5, 2} separates the plane into two regions, 
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and as in the previous proof (K5), we regard the region containing the vertex 0 as 

the ‘inside’ of the cycle. By the Jordan Curve theorem, the edges joining vertex 

0 to each of the vertices 3 and 5 lie entirely inside that cycle, and each of the cycle 

{0, 3, 2, 5, 0} and {0, 3. 4, 5, 0} separates the plane, as illustrated below. 

 

Drawing most of the K33 in the plane 

 Thus, there are 3 regions: the exterior of cycles {2, 3, 4, 5, 2} and the inside 

of each of the other two cycles. It follows that no matter which region contains 

vertex 1, there must be some even numbered vertex that is not in that region, and 

hence the edge from vertex 1 to that even-numbered vertex would have to cross 

some cycle edge. 

Corollary 

 Subgraph of a planar graph is planar. 

Definition 

 A plane graph partitions the plane into number of regions called faces.  

Let G be plane graph. If x is a point on the plane which is not in G, ie: 𝑥 is not a 

vertex of G or a point on any edge of G, then we define the faces of G containing 

𝑥 to be the set of all points on the plane which can be reached from 𝑥 by a line 

which does not cross any edge of G or go through any vertex of G.  
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The number of faces of a plane graph G denoted by 𝑓(𝑎) or simply 𝑓.  

Each plane graph has exactly one unbounded face called the exterior face. 

 

Here 𝑓(𝐺)  =  4  

Degree of faces 

 The degree 𝑑(𝑓) of a face 𝑓 is the number of edges with which it is 

incident, that is the number of edges in the boundary of a face. 

Cut edge being counted twice. 

Eg:  

 

Theorem 

 A graph is planar if and only if each of its blocks is planar. 

Proof: 

 If G is planar, then each of its blocks is planar since a subgraph of planar 

graph is planar.  

 Conversely, suppose that each block of G is planar. We now use induction 

on the number of blocks of G to prove the result. Without loss of generality, we 

𝑑(𝑓2) = 3 

𝑑(𝑓1) = 4 

𝑑(𝑓3) = 3 
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assume that G is connected. If G has only one block, then G itself is a block, and 

hence G is planar. 

 Now suppose G has k planar blocks and that the result has been proved for 

all connected graph having (k-1) planar blocks. Choose any end block B0 of G 

and delete from G all the vertices of B0 except the unique cut vertex, say 𝑣0 of G 

in B0. The resulting connected graph G` of G contains (k-1) planar blocks. Hence, 

by the induction hypothesis G` is planar. Let G~` be  plane embedded of G` such 

that 𝑣0 belongs to the boundary of unbounded face, say 𝑓 `. Let B0
~ be a plane 

embedding of B0 in 𝑓 `, so that 𝑣0 is in the exterior face of B0
~. Then G~` and B0

~ 

is a plane embedding of G. 
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Chapter 3 

EULER’S FORMULA 

 

Theorems  

Euler Formula: 

 For a connected plain graph 𝐺, 𝑛 − 𝑚 + 𝑓 = 2 where 𝑛, 𝑚, and 𝑓 denote 

the number of vertices, edges and faces of 𝐺 respectively. 

Proof: 

We apply the induction on 𝑓. 

If 𝑓 = 1 the 𝐺 is a tree and 𝑚 = 𝑛 − 1. 

Hence 𝑛 − 𝑚 + 𝑓 = 2 and suppose that 𝐺 has 𝑓 faces. 

Since 𝑓 ≥ 2, 𝐺 is not a tree and hence contains a cycle 𝐶. Let 𝑒 be an edge of 𝐶. 

Then 𝑒 belongs to exactly 2 faces, say 𝑓1and 𝑓2 and the deletion of 𝑒 from 𝐺 

results in the formation of a single face from 𝑓1and 𝑓2. Also, since 𝑒 is not a cut 

edge of 𝐺. 𝐺 − 𝑒 is connected.  

Further the number of faces of 𝐺 − 𝑒 is 𝑓 − 1, number of edges in 𝐺 − 𝑒 is 𝑚 −

1 and number of vertices in 𝐺 − 𝑒 is 𝑛. So, applying induction to 𝐺 − 𝑒, we get 

𝑛 − (𝑚 − 1) + (𝑓 − 1) = 2 and this implies that 𝑛 − 𝑚 + 𝑓 = 2. This 

completes the proof of theorem. 

Corollary 1 

 All plane embedding of a planar graph have the same number of faces.  
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Proof: 

Since 𝑓 = 𝑚 − 𝑛 + 2 the number of faces depends only on 𝑛 and 𝑚 and not on 

the particular embedding. 

Corollary 2 

 If 𝐺 is a simple planar graph with at least 3 vertices, then 𝑚 ≤ 3𝑛 − 6. 

Proof: 

Without the generality we can assume that 𝐺 is a simple connected plane graph. 

Since 𝐺 is simple and 𝑛 ≥ 3, each face of 𝐺 has degree at least 3. Hence if 𝑓 

denote the set of faces of 𝐺 ∑ 𝑑(𝑓)𝑓𝜖𝐹 ≥ 3𝑓. But ∑ 𝑑(𝑓)𝑓𝜖𝐹 = 2𝑚. 

Consequently 2𝑚 ≥ 3𝑓 so that 𝑓 ≤
2𝑚

3
. 

By the Euler formula 𝑚 = 𝑛 + 𝑓 − 2 now 𝑓 ≤
2𝑚

3
 implies m ≤ n + (

2m

3
) − 2. 

This gives. 𝑚 ≤ 3𝑛 − 6. 
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Chapter 4 

DUAL OF A PLANE GRAPH 

 

Definition 

 Let G be a plane graph. One can form out of G a new graph H in the 

following way corresponding to each face f(g), take the vertex f* and 

corresponding to each edge e(g), take an edge e*. Then edge e* joins vertices f* 

and g* in H iff edge e is common to the boundaries of faces f and g in G. The 

graph H is then called dual of G. 

Example: 

 

Plane graph and its Dual 
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CONCLUSION 

 

 In this project we discussed the topic planar graph in graph theory.  

We discussed about Euler formula and verified that some graphs are planar, and 

some are non-planar. A related important property of planar graphs, maps and 

triangulations is that they can be enumerated very nicely.  

We also discussed about duality of a graph.in mathematical discipline of graph 

theory, the dual graph of a plane graph G is a graph that has a vertex of each face 

of G .it has many applications in mathematical and computational study.  

In fact, graph theory is being used in our so many routine activities. For eg; using 

GPS or google maps to determine a route based on used settings. 
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INTRODUCTION 

A power series is a type of series with terms involving a variable. Power series 

are often used by calculators and computers to evaluate trigonometric, 

hyperbolic, exponential and logarithm functions. So any application of these 

kind of functions is a possible application of power series. Many interesting and 

important differential equations can be found in power series. 

 

 

. 
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PRELIMINERY 

 

A.  An infinite series of the form   

                                  ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯                                (1) 

       is called a power series in x. The series 

∑  

∞

𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)2 + ⋯ 

       is a power series in x – x0. 

 

B. The series (1) is said to converge at a point x if the limit 

𝑙𝑖𝑚
𝑚→∞

  ∑  

𝑚

𝑛=0

𝑎𝑛𝑥𝑛 

      exists, and in this case the sum of the series is the value of this limit. 

     Radius of convergence: Series in 𝑥 has a radius of convergence 𝑅, where  

      0 ≤ 𝑅 ≤ ∞, with the property that the series converges if |𝑥| < 𝑅 and           

      diverges if |𝑥| > 𝑅. It should be noted that if 𝑅 = 0 then no 𝑥 satisfies            

      |𝑥| < 𝑅, and if 𝑅 = ∞ then no 𝑥 satisfies |𝑥| > 𝑅 

𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
𝑎𝑛

𝑎𝑛+1
|  , if the limit exists. 

 

C. Suppose that (1) converges for |𝑥| < 𝑅 with 𝑅 > 0, and denote its sum  

     by f(x):         

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

     Then f(x) is automatically continuous and has derivatives of all orders for 

      |𝑥| < 𝑅. 
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D.  Let f(x) be a continuous function that has derivatives of all orders for 

      |x|< R with R > 0. f(x) be represented as power series using Taylor’s      

      formula: 

𝑓(𝑥) = ∑  

𝑛

𝑘=0

𝑓(𝑘)(0)

𝑘!
𝑥𝑘 + 𝑅𝑛(𝑥) 

     where the remainder Rn (x) is given by 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑥̅)

(𝑛 + 1)!
𝑥𝑛+1 

     for some point 𝑥̅ between 0 and x.  

 

E.  A function f(x) with the property that a power series expansion of 

      the form 

  

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 

      is valid in some neighbourhood of the point x0 is said to be analytic at 

      x0. In this case the an are necessarily given by 

𝑎𝑛 =
𝑓(𝑛)(𝑥0)

𝑛!
 

      and is called the Taylor series of f(x) at x0. 

 

Analytic functions: A function f defined on some open subset U of R or C is          

called analytic if it is locally given by a convergent power series. This means 

that every a ∈ U has an open neighbourhood V ⊆ U, such that there exists           

a power series with centre a that converges to f(x) for every x ∈ V. 
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CHAPTER 1 

SERIES SOLUTION OF FIRST ORDER EQUATION 

We have studied to solve linear equations with constants coefficient but with 

variable coefficient only specific cases are discussed. Now we turn to these 

latter cases and try to find a general method to solve this. The idea is to assume 

that the unknown function y can be explained into a power series. Our purpose 

in this section is to explain the procedures by showing how it works in the case 

of first order equation that are easy to solve by elementary methods.  

 

Example 1: we consider the equation               

𝑦ʹ = 𝑦 

Consider the above equation as  (1). Assume that y has a power series solution 

of the form 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

Which converges for |x| < R, R > 0 

That is we assume that  𝑦ʹ = 𝑦 has a solution that is analytic at origin. We have 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

                           = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ ⋯ 

then 

𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 

                                     = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ … …. 

            ∴ (1) ⇒ 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 ⋯ 

                       = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

⇒ 𝑎1 = 𝑎0  

 2𝑎2 = 𝑎1 ⇒                                𝑎2 =
𝑎1

2
=

𝑎0

2
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3𝑎3 = 𝑎2 ⇒                               𝑎3 =
𝑎2

3
=

𝑎0

2 ∙ 3
=

𝑎0

3!
 

4𝑎4 = 𝑎3 ⇒                               𝑎4 =
𝑎3

4
=

𝑎0

2 ⋅ 3 ⋅ 4
=

𝑎0

4!
 

∴  we get                                      𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

                                                            = 𝑎0 + 𝑎0𝑥 +
𝑎0

2
𝑥2 +

𝑎0

3!
𝑥3 +

𝑎0

4!
𝑥4 + ⋯ 

                                                            = 𝑎0 (1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ ) 

                                                        𝑦 = 𝑎0𝑒𝑥 

To find the actual function we have 𝑦ʹ = 𝑦 

                                            i.e.,   
𝑑𝑦

𝑑𝑥
= 𝑦  ⇒       

𝑑𝑦

𝑦
= 𝑑𝑥 

integrating  

                                                 log 𝑦 = 𝑥 + 𝑐 

                                          i.e.,        𝑦 = 𝑒𝑥+𝑐 = 𝑒𝑥 ⋅ 𝑒𝑐 

                                                        𝑦 = 𝑎0𝑒𝑥 , where a0 = ec , a constant. 

 

 Example 2: solve 𝑦′ = 2𝑥𝑦. Also find its actual solution. 

 Solution:                                         𝑦′ = 2𝑥𝑦                        (1) 

 Assume that y has a power series of the form 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

Which converges for  |𝑥| < 𝑅, 𝑅 > 0 

We have                                           𝑦 = ∑  

∞

𝑛=0

a𝑛 𝑥𝑛 

                                                        = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

   𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 
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                             = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ 

Then (1) ⇒ 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ =  2𝑥(𝑎0 + 𝑎1𝑥 +𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ ) 

                                                      = 2𝑥𝑎0 + 2𝑥𝑎1𝑥 + 2𝑥𝑎2𝑥2 + 2𝑥𝑎3𝑥3 + ⋯ 

                                                      = 2𝑥𝑎0 + 2𝑎1𝑥2 + 2𝑎2𝑥3 + 2𝑎3𝑥4 + ⋯ … .. 

⇒ 𝑎1 = 0         2𝑎2 = 2𝑎0 ⇒ 𝑎2 =
2𝑎0

𝑧
= 𝑎0 

                        3. 𝑎3 = 2𝑎1 ⇒ 𝑎3 =
2𝑎1

3
= 0 

                         4𝑎4 = 2𝑎2 ⇒ 𝑎4 =
2𝑎2

42
=

𝑎0

2
 

                         5𝑎5 = 2𝑎3 = 0 ⇒ 𝑎5 = 0 

                         6𝑎6 = 2𝑎4 ⇒ 𝑎6 =
2𝑎4

6
=

𝑎4

3
=

𝑎0

2⋅3
=

𝑎0

3!
 

We get, 

            

𝑦  = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯

 = 𝑎0 + 0 + 𝑎0𝑥2 + 0𝑥3 +
𝑎0

2
𝑥4 + ⋯

 = 𝑎0 + 𝑎0𝑥2 +
𝑎0

2
𝑥4 + ⋯

 = 𝑎0 (1 + 𝑥2 +
𝑥4

2!
+

𝑥6

3!
+ ⋯ )

 

                                  𝑦 = 𝑎0𝑒𝑥2
  

To find an actual solution 

                

⇒

                                    𝑦′ = 2𝑥𝑦
𝑑𝑦

𝑑𝑥
= 2𝑥𝑦

                                   
𝑑𝑦

𝑦
= 2𝑥 ⋅ 𝑑𝑥

                              log 𝑦 = 𝑥2 + 𝑐

𝑦 = 𝑒𝑥2
+ 𝑐

⇒ 𝑦 = 𝑎0𝑒𝑥2
, where 𝑎0 = 𝑒𝑐
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Example 3: Consider 𝑦 = (1 + 𝑥)𝑝 where p is an arbitrary constant. Construct a 

differential equation from this and then find the solution using power series 

method. 

 Solution 

             First, we construct a differential equation 

                         i.e. 𝑦 = (1 + 𝑥)𝑝 

                              𝑦′ = 𝑝(1 + 𝑥)𝑝−1 =
𝑝(1+𝑥)𝑝

1+𝑥
=

𝑝𝑦

1+𝑥
 

                            ∴ (1 + 𝑥)𝑦′ = 𝑝𝑦,   𝑦(0) = 𝑟 

Assume that y has a power series solution of the form, 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

                                  = 𝑎0 + 𝑎1𝑥 + 𝑎̇2𝑥2 + ⋯ … … 

Which converges for |𝑥| < 𝑅̇,    𝑅 > 0 

                                𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ … … .. 

    𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 

                              = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ 

                             Then (1 + 𝑥)𝑦′ = 𝑝𝑦  

⇒ (1 + 𝑥)𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ = 𝑝(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )  

⇒ (𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ ) + (𝑎1𝑥 + 2𝑎2𝑥2 + 3𝑎3𝑥3 + ⋯ )  

                                                           = 𝑎0𝑝 + 𝑎1𝑝𝑥 + 𝑎2𝑝𝑥2 + ⋯ 

Equating the coefficients of 𝑥, 𝑥2, … 

                            𝑎1 = 𝑎0𝑝  i.e.  𝑎1 = 𝑝, (since 𝑎0 = 1) 

       ⇒ 2𝑎2 = 𝑎1(p − 1) 

               𝑎2 =
𝑎1(p − 1)

2
=

𝑎0𝑃(𝑝 − 1)

2
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                3𝑎3 + 2𝑎2 = 𝑎2𝑝
𝑠𝑎3 = 𝑎2𝑝 − 2𝑎2

                          = 𝑎2(𝑝 − 2)

𝑎3 =
𝑎2(𝑝 − 2)

3
=

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)

2 ⋅ 3

 

4𝑎4 + 3𝑎3 = 𝑎3𝑝
4𝑎4 = 𝑎3𝑝 − 3𝑎3

= 𝑎3(𝑝 − 3)

𝑎4 =
𝑎3(𝑝 − 3)

4
=

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

2 ⋅ 3 ⋅ 4

 

∴ we get, 

           𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 

= 𝑎0 + 𝑎0𝑝𝑥 +
𝑎0𝑝(𝑝 − 1)

2
𝑥2 +

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)

2 ⋅ 3
𝑥3 + ⋯ … 

              = 1 + 𝑝𝑥 +
𝑝(𝑝 − 1)

2!
𝑥2 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
𝑥3 + 

                 
𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

4!
𝑥4 + ⋯ +

𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − (𝑛 − 1))

𝑛!
𝑥𝑛 

Since the initial problem y(0) = 1 has one solution the series converges for |x|<1 

So this is a power solution,  

(1 + 𝑥)𝑝 = 1 + 𝑝𝑥 +
𝑝(𝑝 − 1)

2!
𝑥2 + ⋯ +

𝑝(𝑝 − 1) ⋯ (𝑝 − (𝑛 − 1))

𝑛!
𝑥𝑛 

Which is binomial series. 

 

Example 4: Solve the equation  𝑦′ = 𝑥 − 𝑦, 𝑦 (0) = 0   

  Solution: Assume that y has a power series solution of the form 

𝑦 = ∑  

∞

𝑛=0

an 𝑥𝑛 

which converges for |𝑥| < 𝑅, 𝑅 > 0 

                           
 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯

𝑦′ = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯
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 Now 𝑦′ = 𝑥 − 𝑦

(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ ) = 𝑥 − (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )
 

Equating the coefficients of 𝑥, 𝑥2,  

𝑎1     = −𝑎0 = 0,      Since     𝑦(0) = 0
2𝑎2     = 1 − 𝑎1        
    = 1 − 0    

 

                                      

⇒ 𝑎2 =
1

2
   3𝑎3 = −𝑎2

      𝑎3 =
−𝑎2

3
= −

1

2 ⋅ 3

 

                                          4𝑎4 = −𝑎3

⇒ 𝑎4 =
1

2 ⋅ 3 ⋅ 4

 

                                           ∴ 𝑦 = 0 + 0 +
𝑥2

2!
−

𝑥3

3!
+

𝑥4

4!
− ⋯ … … 

                                                   
= (1 − 𝑥 +

𝑥2

2!
−

𝑥3

3!
+ ⋯ ) + 𝑥 − 1

= 𝑒−𝑥 + 𝑥 − 1

 

By direct method  

𝑦′ = 𝑥 − 𝑦
𝑑𝑦

𝑑𝑥
= 𝑥 − 𝑦 ⇒

𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑥

                                       ( 
𝑑𝑦

𝑑𝑥
+ 𝑝𝑦 = 𝑄 𝑓𝑜𝑟𝑚) 

here 𝑃(𝑥) = 1,  integrating factor 

= 𝑒∫ 𝑝(𝑥)⋅𝑑𝑥

= 𝑒𝑥

 

                     

∴ 𝑦𝑒𝑥 = ∫ 𝑥𝑒𝑥 ⋅ 𝑑𝑥

𝑦𝑒𝑥 = 𝑥 ⋅ 𝑒𝑥 − ∫ 𝑒𝑥 ⋅ 𝑑𝑥
= 𝑥𝑒𝑥 − 𝑒𝑥

𝑦𝑒𝑥 = 𝑒𝑥(𝑥 − 1) + 𝑐

 

𝑦 =
𝑒𝑥(𝑥 − 1) + 𝑐

𝑑𝑥
= 𝑥 − 1 +

𝑐

𝑒𝑥
= 𝑐𝑒−𝑥 + (𝑥 − 1)

  ∴ 𝑦 = (𝑥 − 1) + 𝑐𝑒−𝑥
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CHAPTER 2 

SECOND ORDER LINEAR EQUATION, ORDINARY POINTS 

 

Consider the general homogeneous second order linear equation, 

                                    𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0                    (1) 

As we know, it is occasionally possible to solve such an equation in terms of 

familiar elementary functions. This is true, for instance, when P(x) and Q(x) 

are constants, and in a few other cases as well. For the most part, however, 

the equations of this type having the greatest significance in both pure and 

applied mathematics are beyond the reach of elementary methods, and can 

only be solved by means of power series. 

P(x) and Q(x) are called coefficients of the equation. The behaviour of its 

solutions near a point x0 depends on the behaviour of its coefficient functions 

P(x) and Q(x) near this point. we confine ourselves to the case in which P(x) and 

Q(x) are well behaved in the sense of being analytic at x0, which means that 

each has a power series expansion valid in some neighbourhood of this point. In 

this case x0 is called an ordinary point of equation (1). Any point that is not an 

ordinary point of (1) is called a singular point. 

Consider the equation, 

                                                          𝑦′′ + 𝑦 = 0                                     (2) 

the coefficient functions are P(x) = 0 and Q(x) = 1, These functions are analytic 

at all points, so we seek a solution of the form, 

                                 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 + ⋯                    (3)       

Differentiating (3) we get, 

              𝑦′ = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ + (𝑛 + 1)𝑎𝑛+1𝑥𝑛 + ⋯          (4)   
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And 

 𝑦′′ = 2𝑎2 + 2 ⋅ 3𝑎3𝑥 + 3 ⋅ 4𝑎4𝑥2 + ⋯ + (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 + ⋯  (5) 

If we substitute (5) and (3) into (2) and add the two series term by term, we get 

𝑦′′ + 𝑦 =
(2𝑎2 + 𝑎0) + (2 ⋅ 3𝑎3 + 𝑎1)𝑥 + (3 ⋅ 4𝑎4 + 𝑎2)𝑥2 +

  (4 ⋅ 5𝑎5 + 𝑎3)𝑥3  + ⋯ + [(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑎𝑛]𝑥𝑛 + ⋯
= 0 

and equating to zero the coefficients of successive powers of x gives 

2𝑎2 + 𝑎0 = 0, 2 ⋅ 3𝑎3 + 𝑎1 = 0, 3 ⋅ 4𝑎4 + 𝑎2 = 0 

4 ⋅ 5𝑎5 + 𝑎3 = 0, … … , (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑎𝑛 = 0, … 

By means of these equations we can express an in terms of a0 or a0, according 

as n is even or odd: 

𝑎2 = −
𝑎0

2
, 𝑎3 = −

𝑎1

2 ⋅ 3
, 𝑎4 = −

𝑎2

3 ⋅ 4
=

𝑎0

2 ⋅ 3 ⋅ 4
 

𝑎5 = −
𝑎3

4 ⋅ 5
=

𝑎1

2 ⋅ 3 ⋅ 4 ⋅ 5
, ⋯ 

With these coefficients, (3) becomes 

                    𝑦 = 𝑎0 + 𝑎1𝑥 −
𝑎0

2
𝑥2 −

𝑎1

2 ⋅ 3
𝑥3 +

𝑎0

2 ⋅ 3 ⋅ 4
𝑥4 +

𝑎1

2 ⋅ 3 ⋅ 4 ⋅ 5
𝑥5 − ⋯ 

                        = 𝑎0 (1 −
𝑥2

2!
+

𝑥4

4!
− ⋯ ) + 𝑎1 (𝑥 −

𝑥3

3!
+

𝑥5

5!
− ⋯ )            (6) 

  𝑖. 𝑒,            𝑦 = 𝑎0cos 𝑥 + 𝑎1sin 𝑥 

Since each of the series in the parenthesis converges for all x. This implies the 

series (2) for all x. 

 

Solve the legenders equation, 

(1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0 

Solution 

Consider   (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0  as equation (1) 

Assume that y has a power series solution of the form 

𝑦 = ∑𝑎𝑛𝑥𝑛 
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Which converges |𝑥| < 𝑅, 𝑅 > 0 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

 

       

2𝑥𝑦′ = ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛

𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

𝑥2𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛

 

put 𝑛 = 𝑛 + 2    (Since 𝑦′′ is not 𝑥𝑛 form ) 

⇒ ∑  

∞

𝑛=0

(𝑛 + 2)(𝑛 + 2 − 1)𝑎𝑛+2𝑥𝑛+2−2

∴ 𝑦′′ = ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛

 

Now (1) ⇒              𝑦′′ − 𝑥2𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0 

⇒ ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 − ∑𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 − ∑2𝑛𝑎𝑛𝑥𝑛 + ∑𝑝(𝑝 + 1)𝑎𝑛𝑥𝑛 = 0  

⇒ ∑  

∞

𝑛=0

[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 𝑛(𝑛 − 1)𝑎𝑛 − 2𝑛𝑎𝑛 + 𝑝(𝑝 + 1)𝑎𝑛)𝑥𝑛] = 0  

                                                                                         for n = 0,1,2,3……. 

⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 𝑛(𝑛 − 1)𝑎𝑛 − 2𝑛𝑎𝑛 + 𝑝(𝑝 + 1)𝑎𝑛 = 0 

⇒ 𝑎𝑛+2 =
[𝑛(𝑛 − 1) + 2𝑛 − 𝑝(𝑝 + 1)]

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 

=
(𝑛2 − 𝑛 + 2𝑛 − 𝑝2 − 𝑝)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)

=
(𝑛2 + 𝑛 − 𝑝2 − 𝑝)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)
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∴ 𝑎𝑛+2 =
−(𝑝 − 𝑛)(𝑝 + 𝑛 + 1)

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 , 𝑛 = 0,1,2 …

      
This is an Recursion formula 

 

 

 put 𝑛 = 0, 𝑎2 =
−𝑝(𝑝 + 1)

1 ⋅ 2
𝑎0

𝑛 = 1, 𝑎3 =
−(𝑝 − 1)(𝑝 + 2)

2 ⋅ 3
⋅ 𝑎1

        𝑛 = 2,      𝑎4 =
−(𝑝 − 2)(𝑝 + 3)

3𝑖4
𝑎2

 =
𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
𝑎0

 

         

𝑛 = 3, 𝑎5 =
−(𝑝 − 3)[𝑝 + 4)

4 ⋅ 5
𝑎3

=
(𝑝 − 1)(𝑝 − 3)(𝑝 + 2)(𝑝 + 4)

5!
𝑎1

𝑛 = 4, 𝑎6 =
−(𝑝 − 4)(𝑝 + 5)

5 ⋅ 6
𝑎4

=
−𝑝(𝑝 − 2)(𝑝 − 4)(𝑝 + 1)(𝑝 + 3)(𝑝 + 5)

6!
𝑎0

 

        
𝑛 = 5,          𝑎7 = −

(𝑝 − 5)(𝑝 + 6)

6 ⋅ 7
𝑎5

= −
(𝑝 − 1)(𝑝 − 3)(𝑝 − 5)(𝑝 + 2)(𝑝 + 4)(𝑝 + 6)

7!
𝑎1

 

 

               

𝑦 = 𝑎0 [1 −
𝑝(𝑝 + 1)

2!
𝑥2 +

𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
𝑥4

−
𝑝(𝑝 − 2)(𝑝 − 4)(𝑝 + 1)(𝑝 + 3)(𝑝 + 5)

6!
𝑥6 + ⋯ ]

+𝑎1 [𝑥 −
(𝑝 − 1)(𝑝 + 2)

3!
𝑥3 +

(𝑝 − 1)(𝑝 − 3)(𝑝 + 2)(𝑝 + 4)

5!
𝑥5

−
(𝑝 − 1)(𝑝 − 3)(𝑝 − 5)(𝑝 + 2)(𝑝 + 4)(𝑝 + 6)

7!
𝑥7 + ⋯ ]
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Find the general solution of (1 + 𝑥2)𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0 in terms of power 

series in 𝑥. Can you express this solution by means of elementary functions? 

Solution 

Consider the equation   (1 + 𝑥2)𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0  as equation (1) 

Assume that y has a power series solution of the form 

𝑦 = ∑𝑎𝑛𝑥𝑛 

Which converges |𝑥| < 𝑅, 𝑅 > 0 

         𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

       𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

 

2𝑥𝑦′ = ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛

                   𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

 

                                    (1 + 𝑥2)𝑦′′ = 𝑦′′ + 𝑥2𝑦′′ 

                                                     𝑥2𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 

        Now 𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 

 

 put 𝑛 = 𝑛 + 2

⇒                                                           ∑  

∞

𝑛=0

(𝑛 + 2)(𝑛 + 2 − 1)𝑎𝑛 + 2𝑥𝑛+2=2

                                        = ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛
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(1) ⇒ ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 + ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛

+ ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛 − ∑  

∞

𝑛=0

2𝑎𝑛𝑥𝑛 = 0

 

⇒ ∑[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 + 2𝑛𝑎𝑛 − 2𝑎𝑛)𝑥𝑛] = 0 

            ⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 + 2𝑛𝑎𝑛 − 2𝑎𝑛 = 0 

 

𝑎𝑛+2 =
[−𝑛(𝑛 − 1) − 2𝑛 + 2]

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛

=
(−𝑛2 + 𝑛 − 2𝑛 + 2)

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛

 

 

                 

 put 𝑛 = 0, 𝑎2 =
2

1 ⋅ 2
𝑎0 =

2𝑎0

2!
= 𝑎0

𝑛 = 1, 𝑎3 =
(1 − 1 − 2 + 2)

2 ⋅ 3
𝑎1 = 0

𝑛 = 2, 𝑎4 =
2 − 4 − 4 + 2

3 ⋅ 4
𝑎2     =

−4

3 ⋅ 4
𝑎0 =

−𝑎0

3

 

                         
𝑛 = 3, 𝑎5 =

3 − 9 − 16 + 2

4.5
𝑎3   = 0

𝑛 = 4, 𝑎6 =
4 − 16 − 8 + 2

5.6
𝑎4   =

−3

5
𝑎4   =

3𝑎0

3.5
=

𝑎0

5

 

 

                                            

∴ 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯

= 𝑎0 + 𝑎1𝑥 + 𝑎0𝑥2 −
𝑎0

3
𝑥4 +

𝑎0

5
𝑥6 … .

= 𝑎0 [1 + 𝑥2 −
𝑥4

3
+

𝑥6

5
− ⋯ ] + 𝑎1𝑥

= 𝑎0 [1 + 𝑥 (𝑥 −
𝑥3

3
+

𝑥5

5
⋯ )] + 𝑎1𝑥

= 𝑎0(1 + 𝑥tan−1 𝑥) + 𝑎1𝑥
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Consider the equation   𝑦′′ + 𝑥𝑦′ + 𝑦 = 0 

(a) Find its general solution     𝑦 = ∑𝑎𝑛𝑥𝑛    in the form                                                        

𝑦 = 𝑎0𝑦1(𝑥) + 𝑎1𝑦2(𝑥) where 𝑦1(𝑥) and 𝑦2(𝑥) are power series 

(b) use the ratio test to verify that the two series 𝑦1(𝑥) and 𝑦2(𝑥) converges        

.      for all x. 

Solution: 

 Given              𝑦′′ + 𝑥𝑦′ + 𝑦 = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1) 

Assume that y has a power series solution the form ∑a𝑛𝑥𝑛 which converges 

for |𝑥|     𝑅 > 0 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ = ∑  

∞

𝑛=1

𝑛 ⋅ 𝑎𝑛𝑥𝑛−1

𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

= ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛

 

                               𝑥𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛 

(1) ⇒ ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)a𝑛+2𝑥𝑛 + ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛 + ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 0
 

                   ⇒ ∑[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛𝑎𝑛 + 𝑎𝑛)𝑥𝑛] = 0 

                   ⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛𝑎𝑛 + 𝑎𝑛 = 0 

                   ⇒ 𝑎𝑛+2 =
(−𝑛 − 1)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)
=

−𝑎𝑛

𝑛 + 2
  

put         𝑛 = 0, 𝑎2 = −
𝑎0

2

                               𝑛 = 1, 𝑎3 =
−2𝑎1

2 ⋅ 3
=

−𝑎1

3

 



17 
 

                               

𝑛 = 2,     𝑎4 =
−3𝑎2

3 ⋅ 4
=

−𝑎2

4
=

𝑎0

8

𝑛 = 3,     𝑎5 =
−4𝑎3

4 ⋅ 5
=

𝑎1

15

𝑛 = 4,     𝑎6 =
−5𝑎4

5 ⋅ 6
=

−𝑎0

48

 

∴  we get              𝑦 = 𝑎0 + 𝑎1𝑥 + −
𝑎0

2
𝑥2 −

𝑎1

3
𝑥3 +

𝑎0

8
𝑥4 +

𝑎1

15
𝑥5 −

𝑎0

48
𝑥6 + ⋯

  

                                   = 𝑎0 [1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥6

2 ⋅ 4 ⋅ 6
+ ⋯ ] + 𝑎1 [𝑥 −

𝑥3

3
+

𝑥5

3.5
+ ⋯ ]

 

𝑤ℎ𝑒𝑟𝑒          𝑦1(𝑥) = 1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥̇2

2 ⋅ 4 ⋅ 6
+ 

                      𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

𝑥5

3 ⋅ 5
+ ⋯ 

    

(b)           𝑦1(𝑥) = 1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥6

2 ⋅ 4 ⋅ 6
+ ⋯ 

 

                         𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
𝑎𝑛

𝑎𝑛+1
| 

                             = 𝑙𝑖𝑚
𝑛→∞

  |
(−1)𝑛

2 ⋅ 4 ⋅ (2𝑛)
/

(−1)𝑛+1

2 ⋅ 4 ⋅⋅ (2𝑛 + 2)
| 

                             = 𝑙𝑖𝑚
𝑛→∞

  |
2(𝑛 + 1)

−1
| 

                             = 𝑙𝑖𝑚
𝑛→∞

 | − 2𝑛(1 +
1

𝑛
)| = ∞ 

                            
∴ 𝑦1(𝑥) converges for all 𝑥

 

                𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

𝑥5

3 ⋅ 5
− ⋯ 
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                    𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
(−1)𝑛

3 ⋅ 5 ⋯ (2𝑛 + 1)

(−1)𝑛+1

3 ⋅ 5 ⋅ ⋯ (2𝑛 + 3)
⁄ | 

                        = 𝑙𝑖𝑚
𝑛→∞

  |
(−1) ⋅ 3 ⋅ 5 ⋯ (2𝑛 + 1)(2𝑛 + 3)

3 ⋅ 5 ⋯ ⋅ (2𝑛 + 1)
| 

                        = 𝑙𝑖𝑚
𝑛→∞

 |(−1)𝑛(2 + 3/𝑛)| = ∞ 

                       
∴ 𝑦2(𝑥) converges for all 𝑥

 

 

 

REGULAR SINGULAR POINTS 

A singular point 𝑥0 of equation 

𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0 

is said to be regular if the functions (𝑥 − 𝑥0)𝑃(𝑥) and (𝑥 − 𝑥0)2𝑄(𝑥) are 

analytic, and irregular otherwise. Roughly speaking, this means that the 

singularity in 𝑃(𝑥) cannot be worse than 1/(𝑥 − 𝑥0), and that in 𝑄(𝑥) cannot 

be worse than 1/(𝑥 − 𝑥0)2.  

If we consider Legendre’s equation in the form 

𝑦′′ −
2𝑥

1 − 𝑥2
𝑦′ +

𝑝(𝑝 + 1)

1 − 𝑥2
𝑦 = 0 

it is clear that x = 1 and x = −1 are singular points. The first is regular because 

(𝑥 − 1)𝑃(𝑥) =
2𝑥

𝑥 + 1
 and (𝑥 − 1)2𝑄(𝑥) = −

(𝑥 − 1)𝑝(𝑝 + 1)

𝑥 + 1
 

are analytic at x = 1, and the second is also regular for similar reasons. 

Example: Bessel’s equation of order p, where p is a nonnegative constant: 

𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 𝑝2)𝑦 = 0 

If this is written in the form 

𝑦′′ +
1

𝑥
𝑦′ +

𝑥2 − 𝑝2

𝑥2
𝑦 = 0, 

it is apparent that the origin is a regular singular point because𝑥𝑃(𝑥) = 1 and 

𝑥2𝑄(𝑥) = 𝑥2 − 𝑝2 are analytic at x = 0.  
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CONCLUSION 

The purpose of this project gives a simple account of series solution of first 

order equation, second order linear equation, ordinary points. The study of these 

topics given excellent introduction to the subject called ‘POWER SERIES’ 

we used application of  power series extensively throughout this project. We 

take it for granted that most readers are reasonably well acquainted with these 

series from an earlier course in calculus. Nevertheless, for the benefit of those 

whose familiarity with this topic may have faded slightly, we presented a brief 

review of the main facts of power series. 
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INTODUCTION 

In linear algebra, an inner product space is a vector space with an additional structure 

called an inner product. This additional structure associates 

each pair of vectors in the space with a scalar quantity known as the inner product of the 

vectors. Inner products allow the rigorous introduction of intuitive geometrical notions 

such as the length of a vector or the angle between two vectors. They also provide the 

means of defining orthogonality between vectors (zero inner product). Inner product 

spaces generalize Euclidean spaces (in which the inner product is the dot product, also 

known as the scalar product) to vector spaces of any (possibly infinite) dimension and are 

studied in functional analysis. The first usage of the concept of a vector space with an 

inner product is due to Peano, in 1898. 

An inner product naturally induces an associated norm, thus an inner product space is also 

a normed vector space. A complete space with an inner product is called a Hilbert space. 

An (incomplete) space with an inner product is called a pre-Hilbert space. 
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PRELIMINARIES 

         LINEAR SPACES 

Definition 1:  A linear (vector) space X  over a field F is a set of elements 

together with a function, called addition, from X × X into X and a function 

called scalar multiplication, from F × X into X which satisfy the following 

conditions for all x, y, z ∈ X and α, β ∈ F; 

i. (x + y) + z = x + (y + z) 

ii. x + y = y + x 

iii. There is an element 0 in X such that x + 0 = x for all x ∈ X. 

iv. For each x ∈ X there is an element −x ∈ X such that x + (−x) = 0. 

v. (x + y) = αx + αy 

vi. (α + β)x = αx + βx 

vii. α(βx) = (αβ)x 

viii. 1 · x = x. 

Properties i to iv imply that X is an abelian group under addition and v to vi 

relate the operation of scalar multiplication to addition X and to addition and 

multiplication in F. 

Examples: 

         (a)  Vn(R). The vectors are n-tuples of real numbers and the scalars are real       
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                numbers with addition and scalar multiplication defined by 

 

                  
1 1 1 1,···, ,···,( ) ( ( )) ,···,n n n n       + = + +                                      (1)             

                                    
1 1( ) (, )···, ,···,n n    =                     (2) 

         Vn(R) is a linear space over R. Similarly, the set of all n-tuples of complex          

            numbers with the above definition of addition and multiplication is a linear    

         space over C and is denoted as Vn(C). 

         (b) The set of all functions from a nonempty set X into a field F with addition and         

                 scalar multiplication defined by 

[f + g](t) = f (t) + g(t) and [αf ](t) = αf (t); f, g ∈ X, t ∈ T     (3)      

is a linear space. 

Let T = N the set of all positive integers and X is the set of all sequences of 

elements F with addition and scalar multiplication defined by 

 

                              ( ) ( )n n n n   + = +                                       (4) 

                                 ( ) ( )n n  =                                                                         (5) 

denoted as V∞(F), form a linear space. 



 

 

4  

METRIC SPACES 

Remember    the        distance        function   in        the  Euclidean  space  Rn. 

                         Let         x, y, z ∈ Rn, then 

(1) |x − y| ≥ 0; |x − y| = 0 if and only if x = y ;  

(2) |x − y| = |y − x|; 

(3) |x − y| ≤ |x − z| + z − y|. 

Definition 2: A metric or distance function on a set X is a real valued function 

d defined on X × X which has the following properties: for all x, y, z ∈ X. 

(1) d(x, y) ≥ 0; d(x, y) = 0 if and only if x = y;  

(2) d(x, y) = d(y, x); 

(3)  d(x, y) ≤ d(x, z) + d(z, y) 

A metric space (X, d) is a nonempty set X and a metric d defined on X. 

Examples: In addition to the Euclidean spaces let us have the following examples. 

Here all functions are assumed to be continuous. Let pL  denotes a set of complex 

valued functions in Rn such that 
p

f   is integrable.  Let us recall some results 

concerning such functions. 

Höder’s Inequality: If p > 1, 1/q = 1 − 1/p 

                                            
1/ 1/| | [ | | ] [ | | ]p p q qfg f g   . 

Minkowski’s Inequality: If p ≥ 1, 

                                       1/ 1/ 1/p[ | | ] [ | | ] [ | | ]p p p p pf g f g+  +    
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If xk and yk for k = 1, … , m are complex numbers, let f (t) = |xk| and g(t) = 

|yk| for t ∈ [k, k + 1] and f (t) = 0 = g(t) for t∈ [1, m + 1]. Then we obtain the 

summation form of the above inequalities from the integral form 

Hölder’s Inequality 

                         

1/ 1/

1 1 1

p q
p qm m m

k k k k

k k k

x y x y
= = =

   
    

      
    

Minkowski’s Inequality: 

                      

1/ 1/ 1/p

1 1 1

p p
p p pm m m

k k k k

k k k

x y x y
= = =

     
+  +     

          
  

         NORMED LINEAR SPACES 

Definition 3. A norm on X is a real valued function, whose value at x is denoted 

by ||x||, satisfying the following conditions for all x, y ∈ X and α ∈ F; 

(1) ||x|| > 0 if x ≠ 0  

(2) ||αx|| = |α|||x|| 

(3) ||x + y|| ≤ ||x|| + ||y||. 

A linear space X with a norm defined on it is called a normed linear space.  

Example: 
pl space. On the linear space Vn(F), define 

                                        
1/

1

[ | | ]
n

p p

i

k

x 
=

=   

         where p ≥ 1 is any real number and x =
1,··( )·, n  . This defines a norm (called p-                         

         norm) on Vn(F). This space is called 
pl space .  
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CHAPTER 1 

INNER PRODUCT SPACES 

INNER PRODUCTS 

Let 𝐹 be the field of real numbers or the field of complex numbers, and V a vector space over 

F an inner product on V is a function which assigns to each ordered’ pair of vectors 𝛼, 𝛽 in V 

a scalar (𝛼|𝛽) in 𝐹 in such a way that for all 𝛼, 𝛽, γ  in V and all scalars c. 

(a) (𝛼 + 𝛽|𝛾) = (𝛼|𝛾) + (𝛽|𝛾) ; 

(b) (c𝛼|𝛽) = 𝑐(𝛼|𝛽) ; 

(c) (𝛽|𝛼) = (𝛼|𝛽̅̅ ̅̅ ̅), the bar denoting complex conjugation 

(d) (𝛼|𝛼) > 0 if 𝛼 ≠ 0 

It should be observed that conditions (a), (b) and (c) implies that 

(𝑒) = (𝛼 ∣ 𝑐𝛽 + 𝛾) = (𝑐̅(𝛼|𝛽) + (𝛼|𝛾) 

One other point should be made. When 𝐹 is the field 𝑅 of real nunbers. The complex conjugates 

appearing in (c) and (e) are superflom. However, in the complex case they are necessary for 

the consistency of the conditions. Without these complex conjugates we would have the 

contradiction 

(𝛼|𝛼) > 0  and  (𝑖𝛼 ∣ 𝑖𝛼) = −1(𝛼|𝛼) 

Example 1: 

On F𝑛 there is an inner product which we call the standard inner product. It is defined on 𝛼 =

(𝑥1, ⋯ 𝑥𝑛) and 𝛽 = (𝑦1, … , 𝑦𝑛), by 
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(𝛼|𝛽) = ∑  

𝑖

𝑥𝑖𝑦𝑖̅ 

When F is R this may be also written as 

(𝛼|𝛽) = ∑  

𝑖

𝑥𝑖𝑦𝑖 

In the real case, the standard inner product is often called the dot or scalar product and denoted 

by 𝛼 ⋅ 𝛽. 

INNER PRODUCTS SPACES 

An inner product space is a real or complex vector space together with a specified inner product 

on that space. 

• A finite-dimensional real inner product space is often called a Euclidean spare. A 

complex inner product spare often referred to as a unitary spare. 

• Every inner product space is a normed linear space and every normed space is a metric 

space. Hence , every inner product space is a metric space. 

Theorem 

If V is an inner product space, then for any vector’s 𝛼, 𝛽 in 𝑉 and any scalar c 

(1) ||𝑐𝛼|| = |𝑐|||𝛼|| ; 

(ii) ||𝛼|| > 0 for 𝛼 ≠ 0 

(iii) |(𝛼 ∣ 𝛽)| ⩽ ||𝛼|| ||𝛽||  

(iv) ∥ 𝛼 + 𝛽|| ⩽∥ 𝛼 ∥ +∥ 𝛽|| 

Proof: 

Statements (i) and (ii) follow almost immediately form the various definitions 

involved. The inequality in (iii) is clearly valid when 𝛼 = 0.  if 𝛼 ≠ 0, put 

𝛾 = 𝛽 −
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 
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      Then,                                     (𝛾 ∣ 𝛼) = 0 and 

                                           0 ⩽∥ 𝛾 ∥2= (𝛽 −
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 𝛽 −

(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼⁄ ) 

                                                             = (𝛽|𝛽) −
(𝛽|𝛼)(𝛼|𝛽)

∥ 𝛼 ∥2
 

            =∥ 𝛽 ∥2−
|(𝛼|𝛽)|2

∥ 𝛼 ∥2
 

Hence, 

|(𝛼 ∣ 𝛽)|2 ⩽∥ 𝛼 ∥2∥ 𝛽 ∥2 

Now using (c) we find that 

                           ∥ 𝛼 + 𝛽 ∥2 = ∥ 𝛼 ∥2+ (𝛼 ∣ 𝛽) + (𝛽 ∣ 𝛼)+∥ 𝛽 ∥2 

                                  

=∥ 𝛼 ∥2+ 2Re (𝛼 ∣ 𝛽)+∥ 𝛽 ∥2

⩽∥ 𝛼 ∥2+ 2 ∥ 𝛼 ∥∥ 𝛽 ∥ +∥ 𝛽 ∥2

= (∥ 𝛼 ∥ +∥ 𝛽 ∥)2

 

Thus,  

                                          ∥ 𝛼 + 𝛽 ∥ ⩽ ∥ 𝛼 ∥ +∥ 𝛽 ∥ 

the inequality (iii) is called the Cauchy -Schwarz inequality. It has a wide variety of application 

the proof shows that if 𝛼is non-zero then 

     (( 𝛼 ∣∣ 𝛽 )) <∥ 𝛼 ∥∥ 𝛽 ∥, unless 

𝛽 =
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 

Then equality occurs in (iii) if and only if 𝛼 and 𝛽 are linearly independent. 

 

 

 

 

 



 

 

9  

 

CHAPTER 2 

ORTHOGONAL SETS 

 Definition 

             Let α and β be the vectors in an inner product space V. Then α is orthogonal to β   if   

(α | β) = 0. We simply say that and are orthogonal. 

Definition 

 If  S is a set of vectors in V, S is called an orthogonal set provided all set pairs of 

distinct vectors in S are orthogonal. 

Definition 

 An orthogonal set is an orthogonal set S with the additional property that  ∥ 𝛼 ∥= 1 for 

every 𝛼 in S.  

• The zero vectors are orthogonal to every vector in V and is the only vector with this 

property. 

• It is an appropriate to think of an orthonormal set as a set of mutually perpendicular 

vectors each having length l.  

Example: the vector (x , y) is 𝑅2 is orthogonal to (−y , x) with respect to the standard inner 

product, for, 

 ((x , y)|(−y , x)) = −xy +  yx = 0 

• The standard basis of either 𝑅𝑛 or 𝐶𝑛 is an orthonormal set with respect to the standard 

inner product. 

 

 



 

 

10  

Theorem : An orthogonal set of nonzero vectors is linearly independent. 

Proof: 

Let S be a finite or infinite orthogonal set of nonzero vectors in a given inner product space 

suppose  𝛼1,𝛼2, … 𝛼𝑛 are distinct vectors in S and that β=𝑐1𝛼1+ + ⋯ 𝑐𝑛𝛼𝑛       

Then  (β|𝛼𝑘)=( 𝑐1𝛼1+ + ⋯ 𝑐𝑛𝛼𝑛|𝛼𝑘)   

                     = 𝑐1(𝛼1|𝛼𝑘) + 𝑐2( 𝛼2|𝛼𝑘)+…+𝑐𝑛(𝛼𝑛|𝛼𝑘)  

                     = 𝑐𝑘(𝛼𝑛|𝛼𝑘) , since (𝛼𝑖 |𝛼𝑗) = 0,if i ≠ j and (𝛼𝑖 |𝛼𝑗) = 1,if i=j 

Hence,  𝑐𝑘= (β |𝛼𝑘) /(𝛼𝑘 , 𝛼𝑘) ) 

             𝑐𝑘=(β |𝛼𝑘)/||𝛼𝑘||2,1≤ k ≤ m 

Thus, when β=0 each 𝑐𝑘=0; so S is a linearly independent set. 

Corollary:  

If {𝛼1,𝛼2, … 𝛼𝑚} is an orthogonal set of nonzero vectors in a finite dimensional inner product 

space V, then m ≤ dimV. 

That is number of mutually orthogonal vectors in V cannot exceed the dimensional V. 

Corollary: 

 If a vector β is linear combination of an orthogonal of nonzero vectors 𝛼1,𝛼2, … 𝛼𝑛, then β is 

the particular linear combination  

 β =∑
(𝛽 |𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘                                                     

Proof : 

        Since β is the linear combination of an orthogonal sequence of nonzero vectors 

𝛼1,𝛼2, … 𝛼𝑛 , we can write     β =𝑐1𝛼1 + ⋯ 𝑐𝑛𝛼𝑛. 

Where      𝑐𝑘 =
(𝛽|𝛼𝑘)

||𝛼𝑘||2
  , 1 ≤ k ≤ m (ref. by previous theorem) 

          Hence, β= ∑
(𝛽|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1  
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Theorem (Gram Schmidt Orthogonalization Process) 

Let V be an inner product space and {𝛽1, … , 𝛽𝑛} be any linearly independent vectors in V. Then 

one may construct orthogonal vectors {𝛼1,𝛼2, … 𝛼𝑛} in V, such that for each k = 1, 2, …n, the 

set {𝛼1,𝛼2, … 𝛼𝑘}is an orthogonal basis for the subspace of V spanned by 𝛽1, … , 𝛽𝑛. 

Proof : 

     The vectors are obtained by means of a construction known as the Gram Schmidt 

orthogonalization process. 

First let 𝛼1 =𝛽1 The other vectors are then given inductively as follows: 

   Suppose 𝛼1,𝛼2, … 𝛼𝑚  (1 ≤ m ≤ n) have been chosen so that for every k  

 {𝛼1,𝛼2, … 𝛼𝑘} (1≤k≤m) 

 is an orthogonal basis for the space of v that is spanned by 𝛽1, … , 𝛽𝑛 

 To construct the next vector 𝛼𝑚+1,  let  

  𝛼𝑚+1,= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 

Then 1 0m +  . For otherwise,  𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘=0, implies, 

 𝛽𝑚+1= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 ,implies, 1m + is a linear combination of 𝛼1,𝛼2, … 𝛼𝑚 and 

hence a linear combination of 1 2, ,..., m   , a contradiction. 

Furthermore, if 1≤j≤m, then, 

                (𝛼𝑚+1| 𝛼𝑗) = ( 𝛽𝑚+1| 𝛼𝑗) -∑
(𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 (𝛼𝑘 |𝛼𝑗)  

   = ( 𝛽𝑚+1| 𝛼𝑚) – ( 𝛽𝑚+1| 𝛼𝑗) , using the orthonormality of {𝛼1,𝛼2, … 𝛼𝑚}. 

Therefore {𝛼1,𝛼2, …,𝛼𝑚+1} is an orthogonal set consisting of m+1 nonzero vectors in the 

subspace spanned by  𝛽1, … , 𝛽𝑚+1. Hence by an earlier Theorem , it is a basis for this subspace 

.Thus the vectors , 𝛼1,𝛼2, … 𝛼𝑛 may be constructed using the formula 
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  𝛼𝑚+1= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 

In particular, when n=3 ,we have  

 𝛼1=𝛽1 

 𝛼2=𝛽2- 
(𝛼2|𝛽2)

||𝛼𝑘||2 α1 

 𝛼3=𝛽3 - 
(𝛽3|𝛼1)

||𝛼1||2 α1 - 
(𝛼2|𝛽3)

||𝛼𝑘||2 𝛼2 

Corollary : 

 Every finite dimensional inner product space has an orthonormal basis. 

Proof : 

 Let V be a finite dimensional inner product space and { 𝛽1, … , 𝛽𝑛} a basis for V. Apply the 

gram Schmidt orthogonalization process  to construct an orthogonal basis , simply replace each  

vector 𝛼𝑛 by  
𝛼𝑘

||𝛼𝑘||
. 

Gram-Schmidt process can be used to test for linear dependence . For suppose  𝛽1, … , 𝛽𝑛 are 

linearly independent vectors in an inner product space; to exclude a trivial case , assume that 

β≠0. Let m be largest integers for which  𝛽1, … , 𝛽𝑚are independent. Then 1≤m˂n. 

 Let 𝛼1, 𝛼2, … 𝛼𝑚 be the vectors obtained by applying the orthogonalization process to 

 𝛽1, … , 𝛽𝑚. Then the vector 𝛼𝑚+1 given by 𝛼𝑚+1= 𝛽𝑚+1–∑
(𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2 𝛼𝑘
𝑚
𝑘=1  is necessarily 0. 

For  𝛼𝑚+1 is in the subspace spanned by 𝛼1, 𝛼2, … 𝛼𝑚 and orthogonal to each of the vectors , 

hence it is 0 as β=∑
(β|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘. Conversely, if 𝛼1, 𝛼2, … 𝛼𝑚 are different from 0 and 𝛼𝑚+1 =0, 

then 𝛽1, … , 𝛽𝑚+1 are linearly independent . 

Definition: 

A best approximation to β  V by vectors in a subspace W  of V is a vector α W  such that 

                                  −  −  for every vector W   . 
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Theorem  

Let W be a subspace of an inner product space V and let  V  . 

    1. The vector  W  is a best approximation to  V  by vectors in W if and 

        only if   − is orthogonal to every vector in W . 

    2. If a best approximation to  V by vectors in W exists, it is unique. 

3. If W is finite-dimensional and {𝛼1,𝛼2, … 𝛼𝑛}  is any orthonormal basis for W ,  

    then the vector   

                                   
( )

2
1

|n
k

k

k k

 
 

=

=    

        is the (unique) best approximation to  by vectors in W. 

Definition: 

Let V be an inner product space and S be any set of vectors in V. The orthogonal complement 

of S is the set S ⊥
 of all vectors in V which are orthogonal to every vector in S. 

That is,  : ( | ) 0,S V S   ⊥ =  =    

Definition: 

      Whenever the vector α in the above theorem exists it is called the orthogonal projection of 

β on W. If every vector in V has an orthogonal projection on W, the mapping that assigns to 

each vector in V its orthogonal projection on W is called the orthogonal projection of V on W. 

Corollary : 

      Let V be an inner product space and W a finite dimensional subspace and E be the 

orthogonal projection of V on W. Then the mapping  

 β →β – Eβ 

is the orthogonal projection of V on W
⊥

. 
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Proof  :  

Let β  V . Then β – Eβ   W ⊥
 , and for any γ  W

⊥
, β – γ = E β+(β – Eβ – γ) 

Since Eβ  W and β – Eβ – γ   W ⊥
 , 

It follows that  

           ||𝛽 –  𝛾||2 = (Eβ+(β – Eβ – γ) ,E β+(β –Eβ – γ)) 

                              = ||𝐸𝛽||2+||𝛽 –  𝐸𝛽 –  𝛾||2 

    ≥ ||𝛽 – (𝛽 –  𝐸𝛽)||2 

 with strict inequality when γ≠ β – Eβ . Therefore, β – Eβ is the best approximation to β by 

vectors in W
⊥

 . 

Theorem  

Let W be a finite dimensional subspace of  an inner product space V and let E be the orthogonal 

projection of V on W. Then E is an idempotent linear transformation of V onto W , W⊥  is the 

null space of E , and  V= W ⨁ W⊥ . 

Proof  

         Let β be an arbitrary vector in V. Then Eβ is the best approximation to β that lies in W . 

In particular, Eβ =β when β is in W . Therefore, E(Eβ) =Eβ for every β in V; that is, E is 

idempotent : 𝐸2= E  . To prove that E is linear transformation, let α and β be any vectors in V 

and c an arbitrary scalar  ,Then by theorem,  

α-Eα and β-Eβ are  each orthogonal to every vector in W . Hence the vector 

c(α-Eα)+(β-Eβ)=(cα +β)-(cEα +Eβ) 

Also belongs to W
⊥

 . Since cEα+ Eβ is a vector in W , it follows from theorem that  

E(cα+ β)= cEα+ Eβ. 

Again let β be any vector in V. Then Eβ is the unique vector in W such that β-Eβ is in W
⊥

.  

Thus Eβ=0 when β is in W
⊥

.  

Conversely, β is in W
⊥

 when Eβ=0. Thus W
⊥

is the null space of E.  
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The equation , 

                              β = E β+β – Eβ  

shows that V = W W ⊥+ ; moreover {0}W W ⊥ = ; for if α is a vector in W W ⊥ ,then 

( )|  =0.  Therefore, α=0 and V is the direct sum of W and W
⊥

. 

Corollary  : 

Under the conditions of theorem, I E−  is the orthogonal projection of V on W
⊥

. 

It is an independent linear transformation of V onto W
⊥

with null space W . 

Proof : 

We have seen that the mapping β →β- E β   is the orthogonal projection of  V on W ⊥
. 

Since E is a linear transformation , this projection W ⊥
is the linear transformation  I E− from 

its geometric properties one sees that I E− is an idempotent .Transformation of V onto W .  

This also follows from the computation ( I E− )( I E− )= I E− - E +𝐸2 

  = I E−  

Moreover , ( I E− )β =0 If and only if   β = Eβ , and this is the case if and only if β is in W  . 

Therefore W is the null space of I E− . 
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INTRODUCTION 

         In mathematics, a group is a set equipped with a binary operation that combines any two 

elements to form a third element in such a way that the three conditions called group axioms are 

satisfied , namely associativity , identity and invertability. 

           Let us take a moment to review our present stockpile of groups. Starting with finite 

groups, we have the cyclic group ℤ𝑛 ,the symmetric group 𝑆𝑛 , and the alternating group 𝐴𝑛 for 

each positive integer n. We also have the dihedral group 𝐷𝑛 and klein 4-group  . Of course we 

know that subgroups of these groups exists. Turning to infinite groups , we have ℤ, ℝ, ℂ under 

addition , and their non zero elements under multiplication we also have the group 𝑆𝐴 of all 

permutation of an infinite set 𝐴 , as well as various groups formed from matrices . 

          One purpose of this section  is to show a way to use known groups as building blocks to 

form more groups. Given two groups 𝐺 and 𝐻, it is possible to construct a new group from the 

cartesian product of 𝐺 and 𝐻 . Conversely , given a large group , it is sometimes possible to 

decompose the group ; that is , a group is sometimes isomorphic to the direct product of two 

smaller groups. Rather than studying a large group , it is often easier to study the component 

group of that group. 
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PRELIMINARY 

         Groups : A non empty set 𝐺 together with an operation ∗ is said to be a group , denote by 

(𝐺 ,∗) , if it satisfy the following axioms. 

• Closure property 

• Associative property 

• Existence of identity 

• Existence of inverse 

                   

Abelian group 

         A group (𝐺 ,∗) is said to be abelian if it satisfies  commutative law . 

Finite group 

         If the underlying set G of the group  (𝐺 ,∗) consist of finite number of elements , then the 

group is finite group . 

Infinite group  

         A group that is not finite is an infinite group . 

Order of a group : The number of elements in a finite  group is called the order of the group , 

denoted by 𝑂(𝐺) . 

Example 

          Show that the set of integers ℤ is a group with respect to the operation of addition of 

integers. 

ℤ =  {… … … . −3, −2, −1,0,1,2,3, … … … } 

Since the addition of two integers gives an integer , it satisfy closure property .  
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If 𝑎, 𝑏, 𝑐 𝜖 ℤ then the (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) , hence associativity holds .  

There is a number 0 𝜖 ℤ such that 0 + 𝑎 = 𝑎 + 0 , hence identity exists 

If 𝑎 𝜖 ℤ then there exists – 𝑎 𝜖 ℤ , such that −𝑎 +  𝑎 =  0 =  𝑎 + −𝑎 

Therefore inverse exist .  

Therefore ℤ is a group under addition .  

Subgroup   

A subset 𝐻 of 𝐺 is said to be a subgroup of 𝐺 if 𝐻 itself is a group under the same operation in 

𝐺. 

There are two different types of group structure of order 4 . 

 ℤ4 =  { 0,1,2,3} 

Klein 4 – group , 𝑉 = {𝑒, 𝑎, 𝑏, 𝑐} 

Cyclic group 

     A group 𝐺 is cyclic if there is some element ‘𝑎’ in 𝐺 that generate 𝐺. And the element ‘𝑎’ is 

called generator of  𝐺.  

Group Homomorphism  

    A function Ѱ: 𝐺 →  𝐺′ is a group homomorphism ( or simply homomorphism ). 

If Ѱ(𝑎𝑏) = Ѱ(𝑎) Ѱ(𝑏) hold for all 𝑎 , 𝑏 ∈ 𝐺 , is called homomorphism property . 

Isomorphism  

    A one  to  one and onto homomorphism Ѱ: 𝐺 → 𝐺′ is called an isomorphism .  
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CHAPTER – 1 

 

DIRECT PRODUCT OF GROUPS 

 

Definition 

The Cartesian product of sets  𝑆, 𝑆2, … … . , 𝑆𝑛 is the set of all ordered n-tuples (𝑎1, 𝑎2, … … . , 𝑎𝑛), 

where 𝑎𝑖  ∈  𝑆𝑖 for 𝑖 = 1,2,3, … … . , 𝑛. The Cartesian product is denoted by either 

 𝑆1 × 𝑆2 × … … .× 𝑆𝑛  or  by Π𝑖=1
𝑛 𝑆𝑖. 

Let 𝐺1, 𝐺2, … … . , 𝐺𝑛 be groups and let us use multiplicative notation for all the group operations. 

If we consider 𝐺𝑖 as a set , 𝑖 = 1,2, … … . 𝑛 . we have the products 𝐺1 × 𝐺2 × … … . ,× 𝐺𝑛 we 

denote it by  Π𝑖=1
𝑛 𝐺𝑖. This product is called direct-product of groups. We can make Π𝑖=1

𝑛 𝐺𝑖 into a 

group by means of a binary operation of multiplication by components. 

 

Theorem 

Let 𝐺1, 𝐺2, … … . , 𝐺𝑛 be groups. For (𝑎1, 𝑎2, … … . , 𝑎𝑛) and (𝑏1, 𝑏2, … … . , 𝑏𝑛) in Π𝑖=1
𝑛 𝐺𝑖 define ; 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛) = (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) 

Then Π𝑖=1
𝑛 𝐺𝑖 is a group. 
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Proof 

 We have , 

Π𝑖=1
𝑛 𝐺𝑖 = {(𝑎1, 𝑎2, … … . , 𝑎𝑛) ∶  𝑎𝑖 ∈  𝐺𝑖} 

(1) Closure property 

Let  (𝑎1, 𝑎2, … … . , 𝑎𝑛), (𝑏1, 𝑏2, … … . , 𝑏𝑛)  ∈  Π𝑖=1
𝑛 𝐺𝑖  

And we have , 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛) = (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) 

Here 𝑎𝑖 ∈ 𝐺𝑖 and 𝑏𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛 

∵  𝐺𝑖 is a group , 𝑎𝑖𝑏𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛 

⇒ (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

i.e. Π𝑖=1
𝑛 𝐺𝑖 is closed under the binary operation. 

(2) Associativity 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛), (𝑏1, 𝑏2, … … . , 𝑏𝑛), (𝑐1, 𝑐2, … … . , 𝑐𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖  

We have, 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛)(𝑐1, 𝑐2, … … . , 𝑐𝑛) 

   = (𝑎1𝑏1𝑐1 , 𝑎2𝑏2𝑐2, … … . , 𝑎𝑛𝑏𝑛𝑐𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

[(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛)](𝑐1, 𝑐2, … … . , 𝑐𝑛) 

= [𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛](𝑐1, 𝑐2, … … . , 𝑐𝑛) 

= [(𝑎1𝑏1)𝑐1, (𝑎2𝑏2)𝑐2, … … . , (𝑎𝑛𝑏𝑛)𝑐𝑛] 

= [𝑎1(𝑏1𝑐1), 𝑎2(𝑏2𝑐2), … … . , 𝑎𝑛(𝑏𝑛𝑐𝑛)] 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛)[𝑏1𝑐1, 𝑏2𝑐2, … … . , 𝑏𝑛𝑐𝑛] 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛)[(𝑏1, 𝑏2, … … . , 𝑏𝑛)(𝑐1, 𝑐2, … … . , 𝑐𝑛)] 
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Hence associativity holds. 

(3) Existence of identity 

If 𝑒𝑖 is the identity element in 𝐺𝑖. 

Then, 

(𝑒1, 𝑒2, … … . , 𝑒𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

Also for , 

 (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖, 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑒1, 𝑒2, … … . , 𝑒𝑛) = (𝑎1𝑒1, 𝑎2𝑒2, … … . , 𝑎𝑛𝑒𝑛) 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛) 

∴ (𝑒1, 𝑒2, … … . , 𝑒𝑛) is the identity element ‘𝑒’ in Π𝑖=1
𝑛 𝐺𝑖 

(4) Existence of inverse 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

Here 𝑎𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛. 

Since 𝐺𝑖 is a group , 

∃ an inverse element 𝑎𝑖
−1 in 𝐺𝑖 : 𝑎𝑖𝑎𝑖

−1 = 𝑒𝑖           𝑖 = 1,2, … … . , 𝑛 

Clearly,                  (𝑎1
−1, 𝑎2

−1, … … . , 𝑎𝑛
−1) ∈ Π𝑖=1

𝑛 𝐺𝑖   & 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑎1
−1, 𝑎2

−1, … … . , 𝑎𝑛
−1) = (𝑒1, 𝑒2, … … . , 𝑒𝑛)  

Hence Π𝑖=1
𝑛 𝐺𝑖 is a group. 
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Note 

If the operation of each 𝐺𝑖 is a commutative. We sometimes use additive notation in Π𝑖=1
𝑛 𝐺𝑖 and 

refer to Π𝑖=1
𝑛 𝐺𝑖 as the direct sum of the group 𝐺𝑖. The notation ⨁𝑖=1

𝑛 𝐺𝑖 , especially with abelian 

groups with operation +. 

The direct sum of abelian groups 𝐺1, 𝐺2, … … . , 𝐺𝑛 may be written 𝐺1⨁𝐺2⨁ … … ⨁𝐺𝑛 

• Direct product of abelian group is abelian 

Example 

Q. Check whether ℤ2 × ℤ3 is cyclic or not. 

ℤ2 = {0,1} 

ℤ3 = {0,1,2} 

ℤ2 × ℤ3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)} 

Consider, 

1(1,1) = (1,1) 

2(1,1) = (1,1) + (1,1) = (0,2) 

3(1,1) = (1,1) + (1,1) + (1,1) = (1,0) 

4(1,1) = 3(1,1) + (1,1) = (1,0) + (1,1) = (0,1) 

5(1,1) = 4(1,1) + (1,1) = (0,1) + (1,1) = (1,2) 

6(1,1) = 5(1,1) + (1,1) = (1,2) + (1,1) = (0,0) 

∴ (1,1) is a generator of ℤ2 ×  ℤ3 

∴  ℤ2 × ℤ3 is a cyclic group generated by (1,1). 
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Q. Check whether ℤ3 × ℤ3 is cyclic or not. 

 ℤ3 = {0,1,2} 

ℤ3 × ℤ3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)} 

1(0,1) = (0,1) 

2(0,1) = (0,2) 

3(0,1) = (0,3) = (0,0)            ∴  order (0,1) = 3 

1(0,2) = (0,2) 

2(0,2) = (0,4) = (0,1) 

3(0,2) = (0,6) = (0,0)           ∴  order (0,2) = 3 

Every element added to itself three times gives the identity. Thus no element can 

generate the group. Hence ℤ3 ×  ℤ3 is not cyclic. 

similarly ℤ𝑚 × ℤ𝑚 is not cyclic for any 𝑚. 

 

Theorem 

The group ℤ𝑚 × ℤ𝑛 is cyclic and is isomorphic to ℤ𝑚𝑛 if and only if 𝑚 and 𝑛 are relatively 

prime, that is, the gcd of 𝑚 and 𝑛 is 1. 

Proof 

Suppose ℤ𝑚 × ℤ𝑛 is cyclic and isomorphic to ℤ𝑚𝑛. 

To show that 𝑚 and 𝑛 are relatively prime. 

Suppose not, let d be the 𝑔𝑐𝑑 of 𝑚 and 𝑛. 

So that 𝑑 > 1 
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Consider 
𝑚𝑛

𝑑
 , which is an integer since 𝑑|𝑚 and 𝑑|𝑛 

Let (𝑟, 𝑠) be an arbitrary element of ℤ𝑚 ×  ℤ𝑛, add (𝑟, 𝑠) repeatedly 
𝑚𝑛

𝑑
 times 

(𝑟, 𝑠) + (𝑟, 𝑠)+, … … . , +(𝑟, 𝑠)} 𝑚𝑛

𝑑
𝑡𝑖𝑚𝑒𝑠 = (0,0) 

∴ no element of ℤ𝑚 × ℤ𝑛 having order 𝑚𝑛. ∴ no element of ℤ𝑚 × ℤ𝑛 can generate ℤ𝑚 ×  ℤ𝑛 

which is not possible. ∵  ℤ𝑚 × ℤ𝑛 is cyclic. Hence 𝑔𝑐𝑑(𝑚, 𝑛) = 1. 

i.e. 𝑚 and 𝑛 are relatively prime. 

Conversely, suppose 𝑚 and 𝑛 are relatively prime, i.e. gcd(𝑚, 𝑛) = 1 

To show that ℤ𝑚 × ℤ𝑛 is cyclic. 

If ℤ𝑚 ×  ℤ𝑛 is cyclic, then it is isomorphic  to ℤ𝑚𝑛, ∵  ℤ𝑚 × ℤ𝑛 has 𝑚𝑛 elements. 

Consider the cyclic subgroup of ℤ𝑚 × ℤ𝑛 generated by the element (1,1).The order of this 

cyclic subgroup is the smallest power of (1,1),that gives the identity (0,0). Here taking a power 

of (1,1) in our additive notation will involve adding (1,1) to itself repeatedly. 

Consider (1,1) + (1,1)+, … … . , +(1,1) 

If we add first coordinates 𝑚 times , we get zero. 

∴ order of first coordinate = 𝑚. 

Similarly , Order of second coordinate = 𝑛. 

The two coordinates together become zero. If we add them 𝑙𝑐𝑚(𝑚, 𝑛) times. 

∵ gcd(𝑚, 𝑛) = 1, We get the 𝑙𝑐𝑚 = 𝑚𝑛. 

i.e. (1,1) generates a cyclic subgroup of ℤ𝑚 ×  ℤ𝑛 of order 𝑚𝑛 , which is the order of the whole 

group. 

⇒  ℤ𝑚 ×  ℤ𝑛 =< (1,1) > 
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⇒  ℤ𝑚 ×  ℤ𝑛 is cyclic. 

 

Corollary 

The group ⨅𝑖=1
𝑛 ℤ𝑚𝑖

 is cyclic and isomorphic to ℤ𝑚1𝑚2…….𝑚𝑛
 if and only if the numbers 𝑚𝑖 for 

𝑖 = 1,2, … … . , 𝑛 are such that the 𝑔𝑐𝑑 of any two of them is 1. 

 

Example  

If 𝑛 is written as a product of powers of distinct prime numbers , as in , 

𝑛 = (𝑝1)𝑛1 . (𝑝2)𝑛2 … … . (𝑝𝑛)𝑛𝑟 

Then ℤ𝑛 is isomorphic to ℤ(𝑝1)𝑛1 × ℤ(𝑝2)𝑛2 × … … .× ℤ(𝑝𝑟)𝑛𝑟. 

In particular , ℤ72 is isomorphic to ℤ8 × ℤ9. 

Consider set of integers ℤ, cyclic subgroup of ℤ is of the form 𝑛ℤ , 𝑛 ∈ ℤ. Consider 2ℤ and 3ℤ , 

then < 2 > ∩ < 3 > = < 6 > 

∴ if we take 𝑟ℤ , 𝑠ℤ of ℤ , then the 𝑙𝑐𝑚(𝑟, 𝑠) =generator of < 𝑟 > ∩ < 𝑠 > 

Using this we can define the 𝑙𝑐𝑚 of the positive integers. 

 

Definition 

Let 𝑟1, 𝑟2, … … . , 𝑟𝑛 be positive integers. Their least common multiple (abbreviated lcm ) is the 

positive generator of the cyclic group of all common multiples of the 𝑟𝑖 , that is the cyclic group 

of all integers divisible by each 𝑟𝑖 for 𝑖 = 1,2, … … . , 𝑛. 
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Theorem 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ ⨅𝑖=1
𝑛 𝐺𝑖.  

If 𝑎𝑖 is of finite order 𝑟𝑖 in 𝐺𝑖 , then the order of (𝑎1, 𝑎2, … … . , 𝑎𝑛) in ⨅𝑖=1
𝑛 𝐺𝑖 is equal to the least 

common multiple of all the 𝑟𝑖. 

 

Proof 

Given,  

order of 𝑎1 = 𝑟1 ⇒ 𝑎1
𝑟1 = 𝑒1 in 𝐺1 

            

order of 𝑎2 = 𝑟2 ⇒ 𝑎2
𝑟2 = 𝑒2 in 𝐺2 

            . 

            . 

            . 

            order of 𝑎𝑛 = 𝑟𝑛 ⇒ 𝑎𝑛
𝑟𝑛 = 𝑒𝑛 in 𝐺𝑛. 

We have to find a power 𝑘 for (𝑎1, 𝑎2, … … . , 𝑎𝑛).  

So that (𝑎1, 𝑎2, … … . , 𝑎𝑛)𝑘 = (𝑒1, 𝑒2, … … . , 𝑒𝑛). 

The power must simultaneously be a multiple of 𝑟1 , multiple of 𝑟2 and so on. But 𝑘 is the least 

positive integers having the above property. 

∴ 𝑘 = 𝑙𝑐𝑚(𝑟1, 𝑟2, … … . , 𝑟𝑛). 

 

Q. Find the order of (8,4,10) in the group ℤ12 × ℤ60 × ℤ24. 

𝑂(8) = 3 in 𝑍12 
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𝑂(4) = 15 in 𝑍60 

𝑂(10) = 12 in 𝑍24 

      𝑂(8,4,10) = 𝑙𝑐𝑚(3,15,12) = 60 

 

Q. Find a generator of ℤ × ℤ2 

ℤ × ℤ2 = {(𝑛, 0), (𝑛, 1): 𝑛 ∈ ℤ} 

(𝑛, 0) = 𝑛(1,0) 

(𝑛, 1) = (𝑛, 0) + (0,1) = 𝑛(1,0) + (0,1) 

∴ ℤ × ℤ2 is generated by {(1,0), (0,1)} 

In general , ℤ × ℤ𝑛 is generated by , 

{(1,0,0, … … . ,0), (0,1,0, … … . ,0), … … . , (0,0, … … . ,1)} 

 

Q. Find the order of (3,10,9) in (ℤ4, ℤ12, ℤ15) 

𝑂(3) = 4 in ℤ4 

𝑂(10) = 6 in ℤ12 

𝑂(9) = 5 in ℤ15 

∴ 𝑂(3,10,9) = 𝑙𝑐𝑚(4,6,5) 

                     = 60 

∴ order of (3,10,9) in ℤ4 × ℤ12 × ℤ15 is 60. 
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CHAPTER-2 

 

FUNDAMENTAL THEOREM OF FINITELY GENERATED ABELIAN 

GROUPS 

Every finitely generated abelian group 𝐺 is isomorphic to a direct product of cyclic groups in the 

form, 

ℤ(𝑝1)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 × ℤ × ℤ × ℤ × … … .× ℤ 

Where the 𝑝𝑖 are primes , not necessarily distinct and the 𝑟𝑖 are positive integers. 

 

Remark 

• The direct product is unique except for possible rearrangement of the factors. 

• The number of factors ℤ is unique and this number is called Betti number. 

Example 

Find all abelian groups , upto isomorphism of order 

 1)8 ,        2)16 ,        3)360 

(1) Order 8 

8 = 1 × 8 

            8 = 2 × 4 = 2 × 22 

            8 = 2 × 2 × 2 

3 non-isomorphic groups are ℤ8, ℤ2 × ℤ4,  

ℤ2 × ℤ2 × ℤ2 
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 (2) Order 16 

16 = 1 × 16 = 1 × 24 

16 = 2 × 8  = 2 × 23 

16 = 4 × 4  = 22 × 22 

16 = 2 × 2 × 2 × 2 

16 = 2 × 2 × 22 

ℤ16, ℤ2 × ℤ8, ℤ4 × ℤ4, ℤ2 × ℤ2 × ℤ2 × ℤ2, ℤ2 × ℤ2 × ℤ4 

(3) Order 360 

360 = 22 ⋅ 32 ⋅ 5 

Possibilities are, 

1)  ℤ8 × ℤ9 × ℤ5 

2)  ℤ2 × ℤ4 × ℤ9 × ℤ5 

3)  ℤ2 × ℤ2 × ℤ2 × ℤ9 × ℤ5 

4)  ℤ8 × ℤ3 × ℤ3 × ℤ5 

5)  ℤ2 × ℤ4 × ℤ3 × ℤ3 × ℤ5 

6)  ℤ2 × ℤ2 × ℤ2 × ℤ3 × ℤ3 × ℤ5 

 

Definition 

A group 𝐺 is decomposable if it is isomorphic to a direct product of two proper non-trivial 

subgroups , otherwise 𝐺 is indecomposable. 
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Example 

ℤ6 is decomposable while ℤ5 is indecomposable. 

ℤ6 is isomorphic to ℤ2 × ℤ3  

ℤ𝑚𝑛 is isomorphic to ℤ𝑚 × ℤ𝑛  , if 𝑚 and 𝑛 are prime. 

 

Theorem 

The finite indecomposable abelian groups are exactly the cyclic groups with order a power of a 

prime. 

Proof 

Let 𝐺 be a finite indecomposable abelian group ∵ 𝐺 is finitely generated , we can apply 

fundamental theorem of finitely generated abelian groups. 

∴ 𝐺 ≅ ℤ(𝑝)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 

∵ 𝐺 is indecomposable and ℤ(𝑝𝑖)𝑟𝑖’s are proper subgroups we get in the above , there is only one 

factor say ℤ(𝑝𝑖)𝑟𝑖  which is cyclic group with order a prime power. 

 

Theorem 

If 𝑚 divides the order of a finite abelian group  , then 𝐺 has a subgroup of order 𝑚. 

Proof 

Given 𝐺 is a finite abelian group. 

∴ we can apply Fundamental Theorem , 
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Hence,  

𝐺 ≅ ℤ𝑝1
𝑟1 × ℤ𝑝2

𝑟2 × … … .× ℤ𝑝𝑛
𝑟𝑛  

Here all primes need not be distinct.  

Then, 

𝑂(𝐺) = 𝑝1
𝑟1 . 𝑝2

𝑟2 … … 𝑝𝑛
𝑟𝑛 

Let 𝑚 is a +𝑣𝑒 integer which divides 𝑂(𝐺). 

0 ≤ 𝑠𝑖 ≤ 𝑟𝑖 By theorem , “ let 𝐺 be a cyclic group with 𝑛 elements and generated by 𝑎. Let     

𝑏 ∈ 𝐺 , 𝑏 = 𝑎𝑠 , then ‘ 𝑏’ generates a cyclic subgroup 𝐻 of 𝐺 containing 
𝑛

𝑑
 elements , where           

𝑑 = gcd(𝑛, 𝑠).” 

𝑝𝑖
𝑟𝑖−𝑠𝑖 generates a cyclic subgroup of ℤ

𝑝
𝑖

𝑟𝑖  having order 
𝑝

𝑖

𝑟𝑖

𝑔𝑐𝑑(𝑝
𝑖

𝑟𝑖 ,𝑝
𝑖

𝑟𝑖−𝑠𝑖)
 

                                                                                       =
𝑝

𝑖

𝑟𝑖

𝑝
𝑖

𝑟𝑖−𝑠𝑖
= 𝑝𝑖

𝑠𝑖 

∴ 𝑂(< 𝑝𝑖
𝑟𝑖−𝑠𝑖 >) = 𝑝𝑖

𝑠𝑖 

i.e. < 𝑝1
𝑟1−𝑠1 >  is a subgroup of ℤ𝑝1

𝑟1  having order 𝑝1
𝑠1. 

< 𝑝2
𝑟2−𝑠2 >  is a subgroup of ℤ𝑝2

𝑟2  having order 𝑝2
𝑠2. 

………………………………………………………… 

< 𝑝𝑛
𝑟𝑛−𝑠𝑛 >  is a subgroup of ℤ𝑝𝑛

𝑟𝑛  having order 𝑝𝑛
𝑠𝑛 . 

∴ < 𝑝1
𝑟1−𝑠1 > × < 𝑝2

𝑟2−𝑠2 > × … … .× < 𝑝𝑛
𝑟𝑛−𝑠𝑛 >   is a subgroup of ℤ𝑝1

𝑟1 × ℤ𝑝2
𝑟2 × … … .× ℤ𝑝𝑛

𝑟𝑛  

having order 𝑝1
𝑠1 ⋅ 𝑝2

𝑠2 ⋅⋅⋅⋅⋅⋅⋅⋅ 𝑝𝑛
𝑠𝑛 = 𝑚. 
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Theorem 

If 𝑚 is a square free integer , that is 𝑚 is not divisible by the square of any prime . Then every 

abelian group of order 𝑚 is cyclic. 

 

Proof 

Let 𝑚 be a square free integer , then 𝑝𝑖⫮ 𝑚 for every 𝑖 greater than 1 for a prime 𝑝.  

Given 𝐺 is a finite abelian group having order 𝑚 , by fundamental theorem , then  

𝐺 ≅ ℤ(𝑝1)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 

Then,             

𝑂(𝐺) = 𝑝1
𝑟1 ⋅ 𝑝2

𝑟2 ⋅⋅⋅⋅⋅⋅⋅ 𝑝𝑛
𝑟𝑛 

∵ 𝑂(𝐺) is a square free integer , the only possibility   

𝑟1 = 𝑟2 =  … … . . = 𝑟𝑛 = 1 

Then, 

𝐺 ≅ ℤ𝑝1
× ℤ𝑝2

× … … .× ℤ𝑝𝑛
 

     ≅ ℤ𝑝1,𝑝2,…….,𝑝𝑛
 , which is cyclic. 

 

Example 

15 is a square free integer. So an abelian group of order 15 is cyclic.
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CONCLUSION 

Direct product of groups is the product 𝐺1 × 𝐺2, … … . 𝐺𝑛 ,where  each 𝐺𝑖 is a set. We have 

discussed about definition and some properties related to the direct product of  groups. The 

fundamental theorem of finitely generated abelian group helped us to get a deeper understanding 

about the topic. The theorems gives us complete structural information about abelian group, in 

particular finite abelian group. We have also discussed some examples in order to develope more 

intrest in algebra. 
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INTODUCTION 

In linear algebra, an inner product space is a vector space with an additional structure 

called an inner product. This additional structure associates 

each pair of vectors in the space with a scalar quantity known as the inner product of the 

vectors. Inner products allow the rigorous introduction of intuitive geometrical notions 

such as the length of a vector or the angle between two vectors. They also provide the 

means of defining orthogonality between vectors (zero inner product). Inner product 

spaces generalize Euclidean spaces (in which the inner product is the dot product, also 

known as the scalar product) to vector spaces of any (possibly infinite) dimension and are 

studied in functional analysis. The first usage of the concept of a vector space with an 

inner product is due to Peano, in 1898. 

An inner product naturally induces an associated norm, thus an inner product space is also 

a normed vector space. A complete space with an inner product is called a Hilbert space. 

An (incomplete) space with an inner product is called a pre-Hilbert space. 
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PRELIMINARIES 

         LINEAR SPACES 

Definition 1:  A linear (vector) space X  over a field F is a set of elements 

together with a function, called addition, from X × X into X and a function 

called scalar multiplication, from F × X into X which satisfy the following 

conditions for all x, y, z ∈ X and α, β ∈ F; 

i. (x + y) + z = x + (y + z) 

ii. x + y = y + x 

iii. There is an element 0 in X such that x + 0 = x for all x ∈ X. 

iv. For each x ∈ X there is an element −x ∈ X such that x + (−x) = 0. 

v. (x + y) = αx + αy 

vi. (α + β)x = αx + βx 

vii. α(βx) = (αβ)x 

viii. 1 · x = x. 

Properties i to iv imply that X is an abelian group under addition and v to vi 

relate the operation of scalar multiplication to addition X and to addition and 

multiplication in F. 

Examples: 

         (a)  Vn(R). The vectors are n-tuples of real numbers and the scalars are real       
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                numbers with addition and scalar multiplication defined by 

 

                  
1 1 1 1,···, ,···,( ) ( ( )) ,···,n n n n       + = + +                                      (1)             

                                    
1 1( ) (, )···, ,···,n n    =                     (2) 

         Vn(R) is a linear space over R. Similarly, the set of all n-tuples of complex          

            numbers with the above definition of addition and multiplication is a linear    

         space over C and is denoted as Vn(C). 

         (b) The set of all functions from a nonempty set X into a field F with addition and         

                 scalar multiplication defined by 

[f + g](t) = f (t) + g(t) and [αf ](t) = αf (t); f, g ∈ X, t ∈ T     (3)      

is a linear space. 

Let T = N the set of all positive integers and X is the set of all sequences of 

elements F with addition and scalar multiplication defined by 

 

                              ( ) ( )n n n n   + = +                                       (4) 

                                 ( ) ( )n n  =                                                                         (5) 

denoted as V∞(F), form a linear space. 
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METRIC SPACES 

Remember    the        distance        function   in        the  Euclidean  space  Rn. 

                         Let         x, y, z ∈ Rn, then 

(1) |x − y| ≥ 0; |x − y| = 0 if and only if x = y ;  

(2) |x − y| = |y − x|; 

(3) |x − y| ≤ |x − z| + z − y|. 

Definition 2: A metric or distance function on a set X is a real valued function 

d defined on X × X which has the following properties: for all x, y, z ∈ X. 

(1) d(x, y) ≥ 0; d(x, y) = 0 if and only if x = y;  

(2) d(x, y) = d(y, x); 

(3)  d(x, y) ≤ d(x, z) + d(z, y) 

A metric space (X, d) is a nonempty set X and a metric d defined on X. 

Examples: In addition to the Euclidean spaces let us have the following examples. 

Here all functions are assumed to be continuous. Let pL  denotes a set of complex 

valued functions in Rn such that 
p

f   is integrable.  Let us recall some results 

concerning such functions. 

Höder’s Inequality: If p > 1, 1/q = 1 − 1/p 

                                            
1/ 1/| | [ | | ] [ | | ]p p q qfg f g   . 

Minkowski’s Inequality: If p ≥ 1, 

                                       1/ 1/ 1/p[ | | ] [ | | ] [ | | ]p p p p pf g f g+  +    
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If xk and yk for k = 1, … , m are complex numbers, let f (t) = |xk| and g(t) = 

|yk| for t ∈ [k, k + 1] and f (t) = 0 = g(t) for t∈ [1, m + 1]. Then we obtain the 

summation form of the above inequalities from the integral form 

Hölder’s Inequality 

                         

1/ 1/

1 1 1

p q
p qm m m

k k k k

k k k

x y x y
= = =

   
    

      
    

Minkowski’s Inequality: 

                      

1/ 1/ 1/p

1 1 1

p p
p p pm m m

k k k k

k k k

x y x y
= = =

     
+  +     

          
  

         NORMED LINEAR SPACES 

Definition 3. A norm on X is a real valued function, whose value at x is denoted 

by ||x||, satisfying the following conditions for all x, y ∈ X and α ∈ F; 

(1) ||x|| > 0 if x ≠ 0  

(2) ||αx|| = |α|||x|| 

(3) ||x + y|| ≤ ||x|| + ||y||. 

A linear space X with a norm defined on it is called a normed linear space.  

Example: 
pl space. On the linear space Vn(F), define 

                                        
1/

1

[ | | ]
n

p p

i

k

x 
=

=   

         where p ≥ 1 is any real number and x =
1,··( )·, n  . This defines a norm (called p-                         

         norm) on Vn(F). This space is called 
pl space .  
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CHAPTER 1 

INNER PRODUCT SPACES 

INNER PRODUCTS 

Let 𝐹 be the field of real numbers or the field of complex numbers, and V a vector space over 

F an inner product on V is a function which assigns to each ordered’ pair of vectors 𝛼, 𝛽 in V 

a scalar (𝛼|𝛽) in 𝐹 in such a way that for all 𝛼, 𝛽, γ  in V and all scalars c. 

(a) (𝛼 + 𝛽|𝛾) = (𝛼|𝛾) + (𝛽|𝛾) ; 

(b) (c𝛼|𝛽) = 𝑐(𝛼|𝛽) ; 

(c) (𝛽|𝛼) = (𝛼|𝛽̅̅ ̅̅ ̅), the bar denoting complex conjugation 

(d) (𝛼|𝛼) > 0 if 𝛼 ≠ 0 

It should be observed that conditions (a), (b) and (c) implies that 

(𝑒) = (𝛼 ∣ 𝑐𝛽 + 𝛾) = (𝑐̅(𝛼|𝛽) + (𝛼|𝛾) 

One other point should be made. When 𝐹 is the field 𝑅 of real nunbers. The complex conjugates 

appearing in (c) and (e) are superflom. However, in the complex case they are necessary for 

the consistency of the conditions. Without these complex conjugates we would have the 

contradiction 

(𝛼|𝛼) > 0  and  (𝑖𝛼 ∣ 𝑖𝛼) = −1(𝛼|𝛼) 

Example 1: 

On F𝑛 there is an inner product which we call the standard inner product. It is defined on 𝛼 =

(𝑥1, ⋯ 𝑥𝑛) and 𝛽 = (𝑦1, … , 𝑦𝑛), by 
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(𝛼|𝛽) = ∑  

𝑖

𝑥𝑖𝑦𝑖̅ 

When F is R this may be also written as 

(𝛼|𝛽) = ∑  

𝑖

𝑥𝑖𝑦𝑖 

In the real case, the standard inner product is often called the dot or scalar product and denoted 

by 𝛼 ⋅ 𝛽. 

INNER PRODUCTS SPACES 

An inner product space is a real or complex vector space together with a specified inner product 

on that space. 

• A finite-dimensional real inner product space is often called a Euclidean spare. A 

complex inner product spare often referred to as a unitary spare. 

• Every inner product space is a normed linear space and every normed space is a metric 

space. Hence , every inner product space is a metric space. 

Theorem 

If V is an inner product space, then for any vector’s 𝛼, 𝛽 in 𝑉 and any scalar c 

(1) ||𝑐𝛼|| = |𝑐|||𝛼|| ; 

(ii) ||𝛼|| > 0 for 𝛼 ≠ 0 

(iii) |(𝛼 ∣ 𝛽)| ⩽ ||𝛼|| ||𝛽||  

(iv) ∥ 𝛼 + 𝛽|| ⩽∥ 𝛼 ∥ +∥ 𝛽|| 

Proof: 

Statements (i) and (ii) follow almost immediately form the various definitions 

involved. The inequality in (iii) is clearly valid when 𝛼 = 0.  if 𝛼 ≠ 0, put 

𝛾 = 𝛽 −
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 
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      Then,                                     (𝛾 ∣ 𝛼) = 0 and 

                                           0 ⩽∥ 𝛾 ∥2= (𝛽 −
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 𝛽 −

(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼⁄ ) 

                                                             = (𝛽|𝛽) −
(𝛽|𝛼)(𝛼|𝛽)

∥ 𝛼 ∥2
 

            =∥ 𝛽 ∥2−
|(𝛼|𝛽)|2

∥ 𝛼 ∥2
 

Hence, 

|(𝛼 ∣ 𝛽)|2 ⩽∥ 𝛼 ∥2∥ 𝛽 ∥2 

Now using (c) we find that 

                           ∥ 𝛼 + 𝛽 ∥2 = ∥ 𝛼 ∥2+ (𝛼 ∣ 𝛽) + (𝛽 ∣ 𝛼)+∥ 𝛽 ∥2 

                                  

=∥ 𝛼 ∥2+ 2Re (𝛼 ∣ 𝛽)+∥ 𝛽 ∥2

⩽∥ 𝛼 ∥2+ 2 ∥ 𝛼 ∥∥ 𝛽 ∥ +∥ 𝛽 ∥2

= (∥ 𝛼 ∥ +∥ 𝛽 ∥)2

 

Thus,  

                                          ∥ 𝛼 + 𝛽 ∥ ⩽ ∥ 𝛼 ∥ +∥ 𝛽 ∥ 

the inequality (iii) is called the Cauchy -Schwarz inequality. It has a wide variety of application 

the proof shows that if 𝛼is non-zero then 

     (( 𝛼 ∣∣ 𝛽 )) <∥ 𝛼 ∥∥ 𝛽 ∥, unless 

𝛽 =
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 

Then equality occurs in (iii) if and only if 𝛼 and 𝛽 are linearly independent. 
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CHAPTER 2 

ORTHOGONAL SETS 

 Definition 

             Let α and β be the vectors in an inner product space V. Then α is orthogonal to β   if   

(α | β) = 0. We simply say that and are orthogonal. 

Definition 

 If  S is a set of vectors in V, S is called an orthogonal set provided all set pairs of 

distinct vectors in S are orthogonal. 

Definition 

 An orthogonal set is an orthogonal set S with the additional property that  ∥ 𝛼 ∥= 1 for 

every 𝛼 in S.  

• The zero vectors are orthogonal to every vector in V and is the only vector with this 

property. 

• It is an appropriate to think of an orthonormal set as a set of mutually perpendicular 

vectors each having length l.  

Example: the vector (x , y) is 𝑅2 is orthogonal to (−y , x) with respect to the standard inner 

product, for, 

 ((x , y)|(−y , x)) = −xy +  yx = 0 

• The standard basis of either 𝑅𝑛 or 𝐶𝑛 is an orthonormal set with respect to the standard 

inner product. 
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Theorem : An orthogonal set of nonzero vectors is linearly independent. 

Proof: 

Let S be a finite or infinite orthogonal set of nonzero vectors in a given inner product space 

suppose  𝛼1,𝛼2, … 𝛼𝑛 are distinct vectors in S and that β=𝑐1𝛼1+ + ⋯ 𝑐𝑛𝛼𝑛       

Then  (β|𝛼𝑘)=( 𝑐1𝛼1+ + ⋯ 𝑐𝑛𝛼𝑛|𝛼𝑘)   

                     = 𝑐1(𝛼1|𝛼𝑘) + 𝑐2( 𝛼2|𝛼𝑘)+…+𝑐𝑛(𝛼𝑛|𝛼𝑘)  

                     = 𝑐𝑘(𝛼𝑛|𝛼𝑘) , since (𝛼𝑖 |𝛼𝑗) = 0,if i ≠ j and (𝛼𝑖 |𝛼𝑗) = 1,if i=j 

Hence,  𝑐𝑘= (β |𝛼𝑘) /(𝛼𝑘 , 𝛼𝑘) ) 

             𝑐𝑘=(β |𝛼𝑘)/||𝛼𝑘||2,1≤ k ≤ m 

Thus, when β=0 each 𝑐𝑘=0; so S is a linearly independent set. 

Corollary:  

If {𝛼1,𝛼2, … 𝛼𝑚} is an orthogonal set of nonzero vectors in a finite dimensional inner product 

space V, then m ≤ dimV. 

That is number of mutually orthogonal vectors in V cannot exceed the dimensional V. 

Corollary: 

 If a vector β is linear combination of an orthogonal of nonzero vectors 𝛼1,𝛼2, … 𝛼𝑛, then β is 

the particular linear combination  

 β =∑
(𝛽 |𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘                                                     

Proof : 

        Since β is the linear combination of an orthogonal sequence of nonzero vectors 

𝛼1,𝛼2, … 𝛼𝑛 , we can write     β =𝑐1𝛼1 + ⋯ 𝑐𝑛𝛼𝑛. 

Where      𝑐𝑘 =
(𝛽|𝛼𝑘)

||𝛼𝑘||2
  , 1 ≤ k ≤ m (ref. by previous theorem) 

          Hence, β= ∑
(𝛽|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1  
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Theorem (Gram Schmidt Orthogonalization Process) 

Let V be an inner product space and {𝛽1, … , 𝛽𝑛} be any linearly independent vectors in V. Then 

one may construct orthogonal vectors {𝛼1,𝛼2, … 𝛼𝑛} in V, such that for each k = 1, 2, …n, the 

set {𝛼1,𝛼2, … 𝛼𝑘}is an orthogonal basis for the subspace of V spanned by 𝛽1, … , 𝛽𝑛. 

Proof : 

     The vectors are obtained by means of a construction known as the Gram Schmidt 

orthogonalization process. 

First let 𝛼1 =𝛽1 The other vectors are then given inductively as follows: 

   Suppose 𝛼1,𝛼2, … 𝛼𝑚  (1 ≤ m ≤ n) have been chosen so that for every k  

 {𝛼1,𝛼2, … 𝛼𝑘} (1≤k≤m) 

 is an orthogonal basis for the space of v that is spanned by 𝛽1, … , 𝛽𝑛 

 To construct the next vector 𝛼𝑚+1,  let  

  𝛼𝑚+1,= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 

Then 1 0m +  . For otherwise,  𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘=0, implies, 

 𝛽𝑚+1= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 ,implies, 1m + is a linear combination of 𝛼1,𝛼2, … 𝛼𝑚 and 

hence a linear combination of 1 2, ,..., m   , a contradiction. 

Furthermore, if 1≤j≤m, then, 

                (𝛼𝑚+1| 𝛼𝑗) = ( 𝛽𝑚+1| 𝛼𝑗) -∑
(𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 (𝛼𝑘 |𝛼𝑗)  

   = ( 𝛽𝑚+1| 𝛼𝑚) – ( 𝛽𝑚+1| 𝛼𝑗) , using the orthonormality of {𝛼1,𝛼2, … 𝛼𝑚}. 

Therefore {𝛼1,𝛼2, …,𝛼𝑚+1} is an orthogonal set consisting of m+1 nonzero vectors in the 

subspace spanned by  𝛽1, … , 𝛽𝑚+1. Hence by an earlier Theorem , it is a basis for this subspace 

.Thus the vectors , 𝛼1,𝛼2, … 𝛼𝑛 may be constructed using the formula 
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  𝛼𝑚+1= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 

In particular, when n=3 ,we have  

 𝛼1=𝛽1 

 𝛼2=𝛽2- 
(𝛼2|𝛽2)

||𝛼𝑘||2 α1 

 𝛼3=𝛽3 - 
(𝛽3|𝛼1)

||𝛼1||2 α1 - 
(𝛼2|𝛽3)

||𝛼𝑘||2 𝛼2 

Corollary : 

 Every finite dimensional inner product space has an orthonormal basis. 

Proof : 

 Let V be a finite dimensional inner product space and { 𝛽1, … , 𝛽𝑛} a basis for V. Apply the 

gram Schmidt orthogonalization process  to construct an orthogonal basis , simply replace each  

vector 𝛼𝑛 by  
𝛼𝑘

||𝛼𝑘||
. 

Gram-Schmidt process can be used to test for linear dependence . For suppose  𝛽1, … , 𝛽𝑛 are 

linearly independent vectors in an inner product space; to exclude a trivial case , assume that 

β≠0. Let m be largest integers for which  𝛽1, … , 𝛽𝑚are independent. Then 1≤m˂n. 

 Let 𝛼1, 𝛼2, … 𝛼𝑚 be the vectors obtained by applying the orthogonalization process to 

 𝛽1, … , 𝛽𝑚. Then the vector 𝛼𝑚+1 given by 𝛼𝑚+1= 𝛽𝑚+1–∑
(𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2 𝛼𝑘
𝑚
𝑘=1  is necessarily 0. 

For  𝛼𝑚+1 is in the subspace spanned by 𝛼1, 𝛼2, … 𝛼𝑚 and orthogonal to each of the vectors , 

hence it is 0 as β=∑
(β|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘. Conversely, if 𝛼1, 𝛼2, … 𝛼𝑚 are different from 0 and 𝛼𝑚+1 =0, 

then 𝛽1, … , 𝛽𝑚+1 are linearly independent . 

Definition: 

A best approximation to β  V by vectors in a subspace W  of V is a vector α W  such that 

                                  −  −  for every vector W   . 
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Theorem  

Let W be a subspace of an inner product space V and let  V  . 

    1. The vector  W  is a best approximation to  V  by vectors in W if and 

        only if   − is orthogonal to every vector in W . 

    2. If a best approximation to  V by vectors in W exists, it is unique. 

3. If W is finite-dimensional and {𝛼1,𝛼2, … 𝛼𝑛}  is any orthonormal basis for W ,  

    then the vector   

                                   
( )

2
1

|n
k

k

k k

 
 

=

=    

        is the (unique) best approximation to  by vectors in W. 

Definition: 

Let V be an inner product space and S be any set of vectors in V. The orthogonal complement 

of S is the set S ⊥
 of all vectors in V which are orthogonal to every vector in S. 

That is,  : ( | ) 0,S V S   ⊥ =  =    

Definition: 

      Whenever the vector α in the above theorem exists it is called the orthogonal projection of 

β on W. If every vector in V has an orthogonal projection on W, the mapping that assigns to 

each vector in V its orthogonal projection on W is called the orthogonal projection of V on W. 

Corollary : 

      Let V be an inner product space and W a finite dimensional subspace and E be the 

orthogonal projection of V on W. Then the mapping  

 β →β – Eβ 

is the orthogonal projection of V on W
⊥

. 
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Proof  :  

Let β  V . Then β – Eβ   W ⊥
 , and for any γ  W

⊥
, β – γ = E β+(β – Eβ – γ) 

Since Eβ  W and β – Eβ – γ   W ⊥
 , 

It follows that  

           ||𝛽 –  𝛾||2 = (Eβ+(β – Eβ – γ) ,E β+(β –Eβ – γ)) 

                              = ||𝐸𝛽||2+||𝛽 –  𝐸𝛽 –  𝛾||2 

    ≥ ||𝛽 – (𝛽 –  𝐸𝛽)||2 

 with strict inequality when γ≠ β – Eβ . Therefore, β – Eβ is the best approximation to β by 

vectors in W
⊥

 . 

Theorem  

Let W be a finite dimensional subspace of  an inner product space V and let E be the orthogonal 

projection of V on W. Then E is an idempotent linear transformation of V onto W , W⊥  is the 

null space of E , and  V= W ⨁ W⊥ . 

Proof  

         Let β be an arbitrary vector in V. Then Eβ is the best approximation to β that lies in W . 

In particular, Eβ =β when β is in W . Therefore, E(Eβ) =Eβ for every β in V; that is, E is 

idempotent : 𝐸2= E  . To prove that E is linear transformation, let α and β be any vectors in V 

and c an arbitrary scalar  ,Then by theorem,  

α-Eα and β-Eβ are  each orthogonal to every vector in W . Hence the vector 

c(α-Eα)+(β-Eβ)=(cα +β)-(cEα +Eβ) 

Also belongs to W
⊥

 . Since cEα+ Eβ is a vector in W , it follows from theorem that  

E(cα+ β)= cEα+ Eβ. 

Again let β be any vector in V. Then Eβ is the unique vector in W such that β-Eβ is in W
⊥

.  

Thus Eβ=0 when β is in W
⊥

.  

Conversely, β is in W
⊥

 when Eβ=0. Thus W
⊥

is the null space of E.  
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The equation , 

                              β = E β+β – Eβ  

shows that V = W W ⊥+ ; moreover {0}W W ⊥ = ; for if α is a vector in W W ⊥ ,then 

( )|  =0.  Therefore, α=0 and V is the direct sum of W and W
⊥

. 

Corollary  : 

Under the conditions of theorem, I E−  is the orthogonal projection of V on W
⊥

. 

It is an independent linear transformation of V onto W
⊥

with null space W . 

Proof : 

We have seen that the mapping β →β- E β   is the orthogonal projection of  V on W ⊥
. 

Since E is a linear transformation , this projection W ⊥
is the linear transformation  I E− from 

its geometric properties one sees that I E− is an idempotent .Transformation of V onto W .  

This also follows from the computation ( I E− )( I E− )= I E− - E +𝐸2 

  = I E−  

Moreover , ( I E− )β =0 If and only if   β = Eβ , and this is the case if and only if β is in W  . 

Therefore W is the null space of I E− . 
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INTRODUCTION 

         In mathematics, a group is a set equipped with a binary operation that combines any two 

elements to form a third element in such a way that the three conditions called group axioms are 

satisfied , namely associativity , identity and invertability. 

           Let us take a moment to review our present stockpile of groups. Starting with finite 

groups, we have the cyclic group ℤ𝑛 ,the symmetric group 𝑆𝑛 , and the alternating group 𝐴𝑛 for 

each positive integer n. We also have the dihedral group 𝐷𝑛 and klein 4-group  . Of course we 

know that subgroups of these groups exists. Turning to infinite groups , we have ℤ, ℝ, ℂ under 

addition , and their non zero elements under multiplication we also have the group 𝑆𝐴 of all 

permutation of an infinite set 𝐴 , as well as various groups formed from matrices . 

          One purpose of this section  is to show a way to use known groups as building blocks to 

form more groups. Given two groups 𝐺 and 𝐻, it is possible to construct a new group from the 

cartesian product of 𝐺 and 𝐻 . Conversely , given a large group , it is sometimes possible to 

decompose the group ; that is , a group is sometimes isomorphic to the direct product of two 

smaller groups. Rather than studying a large group , it is often easier to study the component 

group of that group. 
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PRELIMINARY 

         Groups : A non empty set 𝐺 together with an operation ∗ is said to be a group , denote by 

(𝐺 ,∗) , if it satisfy the following axioms. 

• Closure property 

• Associative property 

• Existence of identity 

• Existence of inverse 

                   

Abelian group 

         A group (𝐺 ,∗) is said to be abelian if it satisfies  commutative law . 

Finite group 

         If the underlying set G of the group  (𝐺 ,∗) consist of finite number of elements , then the 

group is finite group . 

Infinite group  

         A group that is not finite is an infinite group . 

Order of a group : The number of elements in a finite  group is called the order of the group , 

denoted by 𝑂(𝐺) . 

Example 

          Show that the set of integers ℤ is a group with respect to the operation of addition of 

integers. 

ℤ =  {… … … . −3, −2, −1,0,1,2,3, … … … } 

Since the addition of two integers gives an integer , it satisfy closure property .  
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If 𝑎, 𝑏, 𝑐 𝜖 ℤ then the (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) , hence associativity holds .  

There is a number 0 𝜖 ℤ such that 0 + 𝑎 = 𝑎 + 0 , hence identity exists 

If 𝑎 𝜖 ℤ then there exists – 𝑎 𝜖 ℤ , such that −𝑎 +  𝑎 =  0 =  𝑎 + −𝑎 

Therefore inverse exist .  

Therefore ℤ is a group under addition .  

Subgroup   

A subset 𝐻 of 𝐺 is said to be a subgroup of 𝐺 if 𝐻 itself is a group under the same operation in 

𝐺. 

There are two different types of group structure of order 4 . 

 ℤ4 =  { 0,1,2,3} 

Klein 4 – group , 𝑉 = {𝑒, 𝑎, 𝑏, 𝑐} 

Cyclic group 

     A group 𝐺 is cyclic if there is some element ‘𝑎’ in 𝐺 that generate 𝐺. And the element ‘𝑎’ is 

called generator of  𝐺.  

Group Homomorphism  

    A function Ѱ: 𝐺 →  𝐺′ is a group homomorphism ( or simply homomorphism ). 

If Ѱ(𝑎𝑏) = Ѱ(𝑎) Ѱ(𝑏) hold for all 𝑎 , 𝑏 ∈ 𝐺 , is called homomorphism property . 

Isomorphism  

    A one  to  one and onto homomorphism Ѱ: 𝐺 → 𝐺′ is called an isomorphism .  
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CHAPTER – 1 

 

DIRECT PRODUCT OF GROUPS 

 

Definition 

The Cartesian product of sets  𝑆, 𝑆2, … … . , 𝑆𝑛 is the set of all ordered n-tuples (𝑎1, 𝑎2, … … . , 𝑎𝑛), 

where 𝑎𝑖  ∈  𝑆𝑖 for 𝑖 = 1,2,3, … … . , 𝑛. The Cartesian product is denoted by either 

 𝑆1 × 𝑆2 × … … .× 𝑆𝑛  or  by Π𝑖=1
𝑛 𝑆𝑖. 

Let 𝐺1, 𝐺2, … … . , 𝐺𝑛 be groups and let us use multiplicative notation for all the group operations. 

If we consider 𝐺𝑖 as a set , 𝑖 = 1,2, … … . 𝑛 . we have the products 𝐺1 × 𝐺2 × … … . ,× 𝐺𝑛 we 

denote it by  Π𝑖=1
𝑛 𝐺𝑖. This product is called direct-product of groups. We can make Π𝑖=1

𝑛 𝐺𝑖 into a 

group by means of a binary operation of multiplication by components. 

 

Theorem 

Let 𝐺1, 𝐺2, … … . , 𝐺𝑛 be groups. For (𝑎1, 𝑎2, … … . , 𝑎𝑛) and (𝑏1, 𝑏2, … … . , 𝑏𝑛) in Π𝑖=1
𝑛 𝐺𝑖 define ; 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛) = (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) 

Then Π𝑖=1
𝑛 𝐺𝑖 is a group. 
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Proof 

 We have , 

Π𝑖=1
𝑛 𝐺𝑖 = {(𝑎1, 𝑎2, … … . , 𝑎𝑛) ∶  𝑎𝑖 ∈  𝐺𝑖} 

(1) Closure property 

Let  (𝑎1, 𝑎2, … … . , 𝑎𝑛), (𝑏1, 𝑏2, … … . , 𝑏𝑛)  ∈  Π𝑖=1
𝑛 𝐺𝑖  

And we have , 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛) = (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) 

Here 𝑎𝑖 ∈ 𝐺𝑖 and 𝑏𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛 

∵  𝐺𝑖 is a group , 𝑎𝑖𝑏𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛 

⇒ (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

i.e. Π𝑖=1
𝑛 𝐺𝑖 is closed under the binary operation. 

(2) Associativity 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛), (𝑏1, 𝑏2, … … . , 𝑏𝑛), (𝑐1, 𝑐2, … … . , 𝑐𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖  

We have, 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛)(𝑐1, 𝑐2, … … . , 𝑐𝑛) 

   = (𝑎1𝑏1𝑐1 , 𝑎2𝑏2𝑐2, … … . , 𝑎𝑛𝑏𝑛𝑐𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

[(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛)](𝑐1, 𝑐2, … … . , 𝑐𝑛) 

= [𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛](𝑐1, 𝑐2, … … . , 𝑐𝑛) 

= [(𝑎1𝑏1)𝑐1, (𝑎2𝑏2)𝑐2, … … . , (𝑎𝑛𝑏𝑛)𝑐𝑛] 

= [𝑎1(𝑏1𝑐1), 𝑎2(𝑏2𝑐2), … … . , 𝑎𝑛(𝑏𝑛𝑐𝑛)] 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛)[𝑏1𝑐1, 𝑏2𝑐2, … … . , 𝑏𝑛𝑐𝑛] 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛)[(𝑏1, 𝑏2, … … . , 𝑏𝑛)(𝑐1, 𝑐2, … … . , 𝑐𝑛)] 
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Hence associativity holds. 

(3) Existence of identity 

If 𝑒𝑖 is the identity element in 𝐺𝑖. 

Then, 

(𝑒1, 𝑒2, … … . , 𝑒𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

Also for , 

 (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖, 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑒1, 𝑒2, … … . , 𝑒𝑛) = (𝑎1𝑒1, 𝑎2𝑒2, … … . , 𝑎𝑛𝑒𝑛) 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛) 

∴ (𝑒1, 𝑒2, … … . , 𝑒𝑛) is the identity element ‘𝑒’ in Π𝑖=1
𝑛 𝐺𝑖 

(4) Existence of inverse 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

Here 𝑎𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛. 

Since 𝐺𝑖 is a group , 

∃ an inverse element 𝑎𝑖
−1 in 𝐺𝑖 : 𝑎𝑖𝑎𝑖

−1 = 𝑒𝑖           𝑖 = 1,2, … … . , 𝑛 

Clearly,                  (𝑎1
−1, 𝑎2

−1, … … . , 𝑎𝑛
−1) ∈ Π𝑖=1

𝑛 𝐺𝑖   & 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑎1
−1, 𝑎2

−1, … … . , 𝑎𝑛
−1) = (𝑒1, 𝑒2, … … . , 𝑒𝑛)  

Hence Π𝑖=1
𝑛 𝐺𝑖 is a group. 
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Note 

If the operation of each 𝐺𝑖 is a commutative. We sometimes use additive notation in Π𝑖=1
𝑛 𝐺𝑖 and 

refer to Π𝑖=1
𝑛 𝐺𝑖 as the direct sum of the group 𝐺𝑖. The notation ⨁𝑖=1

𝑛 𝐺𝑖 , especially with abelian 

groups with operation +. 

The direct sum of abelian groups 𝐺1, 𝐺2, … … . , 𝐺𝑛 may be written 𝐺1⨁𝐺2⨁ … … ⨁𝐺𝑛 

• Direct product of abelian group is abelian 

Example 

Q. Check whether ℤ2 × ℤ3 is cyclic or not. 

ℤ2 = {0,1} 

ℤ3 = {0,1,2} 

ℤ2 × ℤ3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)} 

Consider, 

1(1,1) = (1,1) 

2(1,1) = (1,1) + (1,1) = (0,2) 

3(1,1) = (1,1) + (1,1) + (1,1) = (1,0) 

4(1,1) = 3(1,1) + (1,1) = (1,0) + (1,1) = (0,1) 

5(1,1) = 4(1,1) + (1,1) = (0,1) + (1,1) = (1,2) 

6(1,1) = 5(1,1) + (1,1) = (1,2) + (1,1) = (0,0) 

∴ (1,1) is a generator of ℤ2 ×  ℤ3 

∴  ℤ2 × ℤ3 is a cyclic group generated by (1,1). 
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Q. Check whether ℤ3 × ℤ3 is cyclic or not. 

 ℤ3 = {0,1,2} 

ℤ3 × ℤ3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)} 

1(0,1) = (0,1) 

2(0,1) = (0,2) 

3(0,1) = (0,3) = (0,0)            ∴  order (0,1) = 3 

1(0,2) = (0,2) 

2(0,2) = (0,4) = (0,1) 

3(0,2) = (0,6) = (0,0)           ∴  order (0,2) = 3 

Every element added to itself three times gives the identity. Thus no element can 

generate the group. Hence ℤ3 ×  ℤ3 is not cyclic. 

similarly ℤ𝑚 × ℤ𝑚 is not cyclic for any 𝑚. 

 

Theorem 

The group ℤ𝑚 × ℤ𝑛 is cyclic and is isomorphic to ℤ𝑚𝑛 if and only if 𝑚 and 𝑛 are relatively 

prime, that is, the gcd of 𝑚 and 𝑛 is 1. 

Proof 

Suppose ℤ𝑚 × ℤ𝑛 is cyclic and isomorphic to ℤ𝑚𝑛. 

To show that 𝑚 and 𝑛 are relatively prime. 

Suppose not, let d be the 𝑔𝑐𝑑 of 𝑚 and 𝑛. 

So that 𝑑 > 1 
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Consider 
𝑚𝑛

𝑑
 , which is an integer since 𝑑|𝑚 and 𝑑|𝑛 

Let (𝑟, 𝑠) be an arbitrary element of ℤ𝑚 ×  ℤ𝑛, add (𝑟, 𝑠) repeatedly 
𝑚𝑛

𝑑
 times 

(𝑟, 𝑠) + (𝑟, 𝑠)+, … … . , +(𝑟, 𝑠)} 𝑚𝑛

𝑑
𝑡𝑖𝑚𝑒𝑠 = (0,0) 

∴ no element of ℤ𝑚 × ℤ𝑛 having order 𝑚𝑛. ∴ no element of ℤ𝑚 × ℤ𝑛 can generate ℤ𝑚 ×  ℤ𝑛 

which is not possible. ∵  ℤ𝑚 × ℤ𝑛 is cyclic. Hence 𝑔𝑐𝑑(𝑚, 𝑛) = 1. 

i.e. 𝑚 and 𝑛 are relatively prime. 

Conversely, suppose 𝑚 and 𝑛 are relatively prime, i.e. gcd(𝑚, 𝑛) = 1 

To show that ℤ𝑚 × ℤ𝑛 is cyclic. 

If ℤ𝑚 ×  ℤ𝑛 is cyclic, then it is isomorphic  to ℤ𝑚𝑛, ∵  ℤ𝑚 × ℤ𝑛 has 𝑚𝑛 elements. 

Consider the cyclic subgroup of ℤ𝑚 × ℤ𝑛 generated by the element (1,1).The order of this 

cyclic subgroup is the smallest power of (1,1),that gives the identity (0,0). Here taking a power 

of (1,1) in our additive notation will involve adding (1,1) to itself repeatedly. 

Consider (1,1) + (1,1)+, … … . , +(1,1) 

If we add first coordinates 𝑚 times , we get zero. 

∴ order of first coordinate = 𝑚. 

Similarly , Order of second coordinate = 𝑛. 

The two coordinates together become zero. If we add them 𝑙𝑐𝑚(𝑚, 𝑛) times. 

∵ gcd(𝑚, 𝑛) = 1, We get the 𝑙𝑐𝑚 = 𝑚𝑛. 

i.e. (1,1) generates a cyclic subgroup of ℤ𝑚 ×  ℤ𝑛 of order 𝑚𝑛 , which is the order of the whole 

group. 

⇒  ℤ𝑚 ×  ℤ𝑛 =< (1,1) > 
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⇒  ℤ𝑚 ×  ℤ𝑛 is cyclic. 

 

Corollary 

The group ⨅𝑖=1
𝑛 ℤ𝑚𝑖

 is cyclic and isomorphic to ℤ𝑚1𝑚2…….𝑚𝑛
 if and only if the numbers 𝑚𝑖 for 

𝑖 = 1,2, … … . , 𝑛 are such that the 𝑔𝑐𝑑 of any two of them is 1. 

 

Example  

If 𝑛 is written as a product of powers of distinct prime numbers , as in , 

𝑛 = (𝑝1)𝑛1 . (𝑝2)𝑛2 … … . (𝑝𝑛)𝑛𝑟 

Then ℤ𝑛 is isomorphic to ℤ(𝑝1)𝑛1 × ℤ(𝑝2)𝑛2 × … … .× ℤ(𝑝𝑟)𝑛𝑟. 

In particular , ℤ72 is isomorphic to ℤ8 × ℤ9. 

Consider set of integers ℤ, cyclic subgroup of ℤ is of the form 𝑛ℤ , 𝑛 ∈ ℤ. Consider 2ℤ and 3ℤ , 

then < 2 > ∩ < 3 > = < 6 > 

∴ if we take 𝑟ℤ , 𝑠ℤ of ℤ , then the 𝑙𝑐𝑚(𝑟, 𝑠) =generator of < 𝑟 > ∩ < 𝑠 > 

Using this we can define the 𝑙𝑐𝑚 of the positive integers. 

 

Definition 

Let 𝑟1, 𝑟2, … … . , 𝑟𝑛 be positive integers. Their least common multiple (abbreviated lcm ) is the 

positive generator of the cyclic group of all common multiples of the 𝑟𝑖 , that is the cyclic group 

of all integers divisible by each 𝑟𝑖 for 𝑖 = 1,2, … … . , 𝑛. 
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Theorem 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ ⨅𝑖=1
𝑛 𝐺𝑖.  

If 𝑎𝑖 is of finite order 𝑟𝑖 in 𝐺𝑖 , then the order of (𝑎1, 𝑎2, … … . , 𝑎𝑛) in ⨅𝑖=1
𝑛 𝐺𝑖 is equal to the least 

common multiple of all the 𝑟𝑖. 

 

Proof 

Given,  

order of 𝑎1 = 𝑟1 ⇒ 𝑎1
𝑟1 = 𝑒1 in 𝐺1 

            

order of 𝑎2 = 𝑟2 ⇒ 𝑎2
𝑟2 = 𝑒2 in 𝐺2 

            . 

            . 

            . 

            order of 𝑎𝑛 = 𝑟𝑛 ⇒ 𝑎𝑛
𝑟𝑛 = 𝑒𝑛 in 𝐺𝑛. 

We have to find a power 𝑘 for (𝑎1, 𝑎2, … … . , 𝑎𝑛).  

So that (𝑎1, 𝑎2, … … . , 𝑎𝑛)𝑘 = (𝑒1, 𝑒2, … … . , 𝑒𝑛). 

The power must simultaneously be a multiple of 𝑟1 , multiple of 𝑟2 and so on. But 𝑘 is the least 

positive integers having the above property. 

∴ 𝑘 = 𝑙𝑐𝑚(𝑟1, 𝑟2, … … . , 𝑟𝑛). 

 

Q. Find the order of (8,4,10) in the group ℤ12 × ℤ60 × ℤ24. 

𝑂(8) = 3 in 𝑍12 
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𝑂(4) = 15 in 𝑍60 

𝑂(10) = 12 in 𝑍24 

      𝑂(8,4,10) = 𝑙𝑐𝑚(3,15,12) = 60 

 

Q. Find a generator of ℤ × ℤ2 

ℤ × ℤ2 = {(𝑛, 0), (𝑛, 1): 𝑛 ∈ ℤ} 

(𝑛, 0) = 𝑛(1,0) 

(𝑛, 1) = (𝑛, 0) + (0,1) = 𝑛(1,0) + (0,1) 

∴ ℤ × ℤ2 is generated by {(1,0), (0,1)} 

In general , ℤ × ℤ𝑛 is generated by , 

{(1,0,0, … … . ,0), (0,1,0, … … . ,0), … … . , (0,0, … … . ,1)} 

 

Q. Find the order of (3,10,9) in (ℤ4, ℤ12, ℤ15) 

𝑂(3) = 4 in ℤ4 

𝑂(10) = 6 in ℤ12 

𝑂(9) = 5 in ℤ15 

∴ 𝑂(3,10,9) = 𝑙𝑐𝑚(4,6,5) 

                     = 60 

∴ order of (3,10,9) in ℤ4 × ℤ12 × ℤ15 is 60. 
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CHAPTER-2 

 

FUNDAMENTAL THEOREM OF FINITELY GENERATED ABELIAN 

GROUPS 

Every finitely generated abelian group 𝐺 is isomorphic to a direct product of cyclic groups in the 

form, 

ℤ(𝑝1)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 × ℤ × ℤ × ℤ × … … .× ℤ 

Where the 𝑝𝑖 are primes , not necessarily distinct and the 𝑟𝑖 are positive integers. 

 

Remark 

• The direct product is unique except for possible rearrangement of the factors. 

• The number of factors ℤ is unique and this number is called Betti number. 

Example 

Find all abelian groups , upto isomorphism of order 

 1)8 ,        2)16 ,        3)360 

(1) Order 8 

8 = 1 × 8 

            8 = 2 × 4 = 2 × 22 

            8 = 2 × 2 × 2 

3 non-isomorphic groups are ℤ8, ℤ2 × ℤ4,  

ℤ2 × ℤ2 × ℤ2 
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 (2) Order 16 

16 = 1 × 16 = 1 × 24 

16 = 2 × 8  = 2 × 23 

16 = 4 × 4  = 22 × 22 

16 = 2 × 2 × 2 × 2 

16 = 2 × 2 × 22 

ℤ16, ℤ2 × ℤ8, ℤ4 × ℤ4, ℤ2 × ℤ2 × ℤ2 × ℤ2, ℤ2 × ℤ2 × ℤ4 

(3) Order 360 

360 = 22 ⋅ 32 ⋅ 5 

Possibilities are, 

1)  ℤ8 × ℤ9 × ℤ5 

2)  ℤ2 × ℤ4 × ℤ9 × ℤ5 

3)  ℤ2 × ℤ2 × ℤ2 × ℤ9 × ℤ5 

4)  ℤ8 × ℤ3 × ℤ3 × ℤ5 

5)  ℤ2 × ℤ4 × ℤ3 × ℤ3 × ℤ5 

6)  ℤ2 × ℤ2 × ℤ2 × ℤ3 × ℤ3 × ℤ5 

 

Definition 

A group 𝐺 is decomposable if it is isomorphic to a direct product of two proper non-trivial 

subgroups , otherwise 𝐺 is indecomposable. 
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Example 

ℤ6 is decomposable while ℤ5 is indecomposable. 

ℤ6 is isomorphic to ℤ2 × ℤ3  

ℤ𝑚𝑛 is isomorphic to ℤ𝑚 × ℤ𝑛  , if 𝑚 and 𝑛 are prime. 

 

Theorem 

The finite indecomposable abelian groups are exactly the cyclic groups with order a power of a 

prime. 

Proof 

Let 𝐺 be a finite indecomposable abelian group ∵ 𝐺 is finitely generated , we can apply 

fundamental theorem of finitely generated abelian groups. 

∴ 𝐺 ≅ ℤ(𝑝)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 

∵ 𝐺 is indecomposable and ℤ(𝑝𝑖)𝑟𝑖’s are proper subgroups we get in the above , there is only one 

factor say ℤ(𝑝𝑖)𝑟𝑖  which is cyclic group with order a prime power. 

 

Theorem 

If 𝑚 divides the order of a finite abelian group  , then 𝐺 has a subgroup of order 𝑚. 

Proof 

Given 𝐺 is a finite abelian group. 

∴ we can apply Fundamental Theorem , 
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Hence,  

𝐺 ≅ ℤ𝑝1
𝑟1 × ℤ𝑝2

𝑟2 × … … .× ℤ𝑝𝑛
𝑟𝑛  

Here all primes need not be distinct.  

Then, 

𝑂(𝐺) = 𝑝1
𝑟1 . 𝑝2

𝑟2 … … 𝑝𝑛
𝑟𝑛 

Let 𝑚 is a +𝑣𝑒 integer which divides 𝑂(𝐺). 

0 ≤ 𝑠𝑖 ≤ 𝑟𝑖 By theorem , “ let 𝐺 be a cyclic group with 𝑛 elements and generated by 𝑎. Let     

𝑏 ∈ 𝐺 , 𝑏 = 𝑎𝑠 , then ‘ 𝑏’ generates a cyclic subgroup 𝐻 of 𝐺 containing 
𝑛

𝑑
 elements , where           

𝑑 = gcd(𝑛, 𝑠).” 

𝑝𝑖
𝑟𝑖−𝑠𝑖 generates a cyclic subgroup of ℤ

𝑝
𝑖

𝑟𝑖  having order 
𝑝

𝑖

𝑟𝑖

𝑔𝑐𝑑(𝑝
𝑖

𝑟𝑖 ,𝑝
𝑖

𝑟𝑖−𝑠𝑖)
 

                                                                                       =
𝑝

𝑖

𝑟𝑖

𝑝
𝑖

𝑟𝑖−𝑠𝑖
= 𝑝𝑖

𝑠𝑖 

∴ 𝑂(< 𝑝𝑖
𝑟𝑖−𝑠𝑖 >) = 𝑝𝑖

𝑠𝑖 

i.e. < 𝑝1
𝑟1−𝑠1 >  is a subgroup of ℤ𝑝1

𝑟1  having order 𝑝1
𝑠1. 

< 𝑝2
𝑟2−𝑠2 >  is a subgroup of ℤ𝑝2

𝑟2  having order 𝑝2
𝑠2. 

………………………………………………………… 

< 𝑝𝑛
𝑟𝑛−𝑠𝑛 >  is a subgroup of ℤ𝑝𝑛

𝑟𝑛  having order 𝑝𝑛
𝑠𝑛 . 

∴ < 𝑝1
𝑟1−𝑠1 > × < 𝑝2

𝑟2−𝑠2 > × … … .× < 𝑝𝑛
𝑟𝑛−𝑠𝑛 >   is a subgroup of ℤ𝑝1

𝑟1 × ℤ𝑝2
𝑟2 × … … .× ℤ𝑝𝑛

𝑟𝑛  

having order 𝑝1
𝑠1 ⋅ 𝑝2

𝑠2 ⋅⋅⋅⋅⋅⋅⋅⋅ 𝑝𝑛
𝑠𝑛 = 𝑚. 
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Theorem 

If 𝑚 is a square free integer , that is 𝑚 is not divisible by the square of any prime . Then every 

abelian group of order 𝑚 is cyclic. 

 

Proof 

Let 𝑚 be a square free integer , then 𝑝𝑖⫮ 𝑚 for every 𝑖 greater than 1 for a prime 𝑝.  

Given 𝐺 is a finite abelian group having order 𝑚 , by fundamental theorem , then  

𝐺 ≅ ℤ(𝑝1)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 

Then,             

𝑂(𝐺) = 𝑝1
𝑟1 ⋅ 𝑝2

𝑟2 ⋅⋅⋅⋅⋅⋅⋅ 𝑝𝑛
𝑟𝑛 

∵ 𝑂(𝐺) is a square free integer , the only possibility   

𝑟1 = 𝑟2 =  … … . . = 𝑟𝑛 = 1 

Then, 

𝐺 ≅ ℤ𝑝1
× ℤ𝑝2

× … … .× ℤ𝑝𝑛
 

     ≅ ℤ𝑝1,𝑝2,…….,𝑝𝑛
 , which is cyclic. 

 

Example 

15 is a square free integer. So an abelian group of order 15 is cyclic.
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CONCLUSION 

Direct product of groups is the product 𝐺1 × 𝐺2, … … . 𝐺𝑛 ,where  each 𝐺𝑖 is a set. We have 

discussed about definition and some properties related to the direct product of  groups. The 

fundamental theorem of finitely generated abelian group helped us to get a deeper understanding 

about the topic. The theorems gives us complete structural information about abelian group, in 

particular finite abelian group. We have also discussed some examples in order to develope more 

intrest in algebra. 
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INTRODUCTION

This chapter gives an introduction to the theory of normed linear spaces. A skeptical reader may
wonder why this topic in pure mathematics is useful in applied mathematics. The reason is quite
simple: Many problems of applied mathematics can be formulated as a search for a certain
function, such as the function that solves a given differential equation. Usually the function
sought must belong to a definite family of acceptable functions that share some useful properties.
For example, perhaps it must possess two continuous derivatives. The families that arise
naturally in formulating problems are often linear spaces. This means that any linear combination
of functions in the family will be another member of the family. It is common, in addition, that
there is an appropriate means of measuring the “distance” between two functions in the family.
This concept comes into play when the exact solution to a problem is inaccessible, while
approximate solutions can be computed. We often measure how far apart the exact and
approximate solutions are by using a norm. In this process we are led to a normed linear space,
presumably one appropriate to the problem at hand. Some normed linear spaces occur over and
over again in applied mathematics, and these, at least, should be familiar to the practitioner.
Examples are the space of continuous functions on a given domain and the space of functions
whose squares have a finite integral on a given domain.
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PRELIMINARIES

1) LINEAR SPACES

We introduce an algebraic structure on a set and study functions on X which are well behaved𝑋
with respect to this structure. From now onwards , K will denote either R , the set of all real
numbers or C, the set of all complex numbers. For k C , Re k and Im k will denote the  real and∈
imaginary part of k.

A linear space(or a vector space) over K is a non-empty set along with a function𝑋
, called addition and a function : K called scalar multiplication, such+  :  𝑋 × 𝑋 → 𝑋 · × 𝑋 → 𝑋

that for all and K , we have𝑥 ,  𝑦 ,  𝑧 ∈ 𝑋  𝑘 ,  𝑙 ∈

𝑥 + 𝑦 = 𝑦 + 𝑥

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧

∃0∈𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + 0 = 𝑥,

∃ − 𝑥 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + (− 𝑥) = 0 ,

,𝑘 · (𝑥 + 𝑦) = 𝑘 · 𝑥 + 𝑘 · 𝑦

(𝑘 + 𝑙)⋅𝑥 = 𝑘 · 𝑥 + 𝑙 · 𝑥,

(𝑘𝑙)⋅𝑥 = 𝑘 · (𝑙 · 𝑥),

1⋅𝑥 = 𝑥.

We shall write in place of . We shall also adopt the following notations. For𝑘𝑥 𝑘 · 𝑥
K and subsets of ,𝑥, 𝑦 ∈ 𝑋, 𝑘 ∈ 𝐸, 𝐹 𝑋

𝑥 + 𝐹 = {𝑥 + 𝑦: 𝑦 ∈ 𝐹},

`𝐸 + 𝐹 = {𝑥 + 𝑦: 𝑥 ∈ 𝐸, 𝑦 ∈ 𝐹},

𝑘𝐸 = {𝑘𝑥: 𝑥 ∈ 𝐸}.

2) BASIS

A nonempty subset of is said to be a subspace of if whenever and𝐸 𝑋 𝑋 𝑘𝑥 + 𝑙𝑦 ∈ 𝐸 𝑥, 𝑦 ∈ 𝐸
K . If , then the smallest subspace of containing is𝑘, 𝑙 ∈ ∅≠𝐸 ⊂ 𝑋 𝑋 𝐸
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𝑠𝑝𝑎𝑛⁡𝐸 = 𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
: 𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 ,  𝑘

1
, …, 𝑘

𝑛
∈ 𝐾{ }

It is called the span of . If span , we say that spans . A subset of is said to be𝐸 𝐸 = 𝑋 𝐸 𝑋 𝐸 𝑋
linearly independent if for all and K , the equation𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

implies that It is called linearly dependent if it is not𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

1
= ⋯ = 𝑘

𝑛
= 0.

linearly independent, that is, if there exist and K such that𝑥
1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

, where at least one is nonzero.𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

𝑗

A subset E of X is called a Hamel basis or simply basis for X if span of E = X and E is
linearly independent .

3) DIMENSION

If a linear space has a basis consisting of a finite number of elements , then X is called finite𝑋
dimensional and the number of elements in a basis for is called the dimension of , denoted as𝑋 𝑋
dimX . Every basis for a finite dimensional linear space has the same (finite) number of elements
and hence the dimension is well-defined. The space is said to have zero dimension. Note that{0}
it has no basis !

If a linear space contains an infinite linearly independent subset, then it is said to be infinite
dimensional.

4)METRIC SPACE

We introduce a distance structure on a set and study functions on which are well-behaved𝑋 𝑋
with respect to this structure.

A metric on a nonempty set is a function R𝑑 𝑋 𝑑: 𝑋 × 𝑋 →
such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

d(x, y) 0 and d(x , y) = 0 iff x=y≥

d(y , x) = d(x , y)

d(x , y) d(x , z) + d(z , y) .≤

The last condition is known as the triangle inequality. A metric space is a nonempty set along𝑋
with a metric on it.
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5)CONTINUOUS FUNCTIONS

Roughly speaking, a function from a metric space to a metric space is continuous if it sends
‘nearby’ points to ‘nearby’ points. If and are metric spaces with metrics and respectively,𝑋 𝑌 𝑑 𝑒
then a function is said to be continuous at if for every 0 , there is some𝐹: 𝑋 → 𝑌 𝑥

0
∈ 𝑋 ϵ⟩

(possibly depending on and ) such that for all satisfyingδ > 0 ϵ 𝑥
0

𝑒 𝐹(𝑥), 𝐹 𝑥
0( )( ) < ϵ 𝑥 ∈ 𝑋

. Further, is said to be continuous on if it is continuous at every point of It is𝑑 𝑥, 𝑥
0( ) < δ 𝐹 𝑋 𝑋.

easy to see that is continuous on if and only if the set F -1(E) is open in X whenever the set E𝐹 𝑋
is open inY. Also , this happens iff F(xn) F(x) in Y whenever xn x in X.→ →

6) UNIFORM CONTINUITY

We note that a continuous function is, in fact, uniformly𝐹: 𝑇 → 𝑆
continuous, that is, for every , there exists someϵ > 0 δ > 0

such that whenever . This can be seen as follows. Let . By𝑒 𝐹(𝑡), 𝐹(𝑢( )) < ϵ 𝑑 𝑡, 𝑢( ) < δ 𝑡 ∈ 𝑇

the continuity of at , there is some , such that whenever𝐹 𝑡 ∈ 𝑇 δ
𝑡

𝑒 𝐹(𝑡), 𝐹 𝑢( )( ) < ε
2

.𝑑 𝑡, 𝑢( ) < δ
𝑡

7) FIELD

A ring is a set R together with two binary operations + and ( which we call addition and·
multiplication ) such that the following axioms are satisfied .

➢ R is an abelian group with respect to addition
➢ Multiplication is associative
➢ the left distributive law a(b + c) = (a b) + (a c) and the right distributive∀𝑎 , 𝑏, 𝑐 ∈ 𝑅 · ·

law (a + b)c = (a c) + (b c) , hold .· ·

A field is a commutative division ring
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CHAPTER 1

NORMED LINEAR SPACE

Let X be a linear space over K .  A norm on X is the function || || from to R such that𝑋 ∀
x,y X and k K ,∈ ∈

and  || || = 0  if and only if x = 0  ,||𝑥||≥0 𝑥

||x + y|| ||x|| + ||y|| ,≤

||kx|| =|k| ||x|| .

A norm is the formalization and generalization to real vector spaces of the intuitive
notion of “ length” in the real world .

A normed space is a linear space with norm on it .

For x and y in X , let
d(x,y) = ||x - y||

Then d is a metric on X so that (X,d) is a metric space , thus every normed space is a metric
space

➢ Every normed linear space is a metric space . But converse may not be true .

Example :

d(x,y) = , x , y X
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦| ∀ ∈

||x - y|| =⇒
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦|

||z||  = , z = x - y X⇒  
|𝑧|

1 + |𝑧| ∈
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|| z||  =α
|α𝑧|

1 +|α𝑧|

=
|α| |𝑧|

1 + |α| |𝑧|

= | |α
|𝑧|

1 + |α| |𝑧|( )
| | ||z|| .≠ α

➢ Result

Let X be a normed linear space . Then ,

| ||x|| - ||y|| | ||x - y|| , x , y X≤ ∀ ∈

Proof :

||x|| = || ( x - y ) + y|| ||x - y|| + ||y||≤

||x|| - ||y|| ||x - y|| (1)⇒ ≤ →

x y↔

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y|| (2)⇒ ≤  →

From (1) and (2)

|||x|| - ||y||| ||x - y||≤  

➢ Norm is a continuous function

Let xn x , as n→ → ∞
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xn - x 0 as n ∞⇒ → →

||xn - x|| 0 as n ∞⇒ → →

| ||xn|| - ||x|| | ||xn - x|| 0 as n ∞≤ → →

||xn|| - ||x|| 0 , as n ∞⇒ → →

||x|| is continuous⇒

➢ Norm is a uniformly continuous function

We have , || || :X R . Let x,y X and > 0→ ∈  ε

Then ||x|| = ||x - y + y ||

||x - y|| + ||y||                               ≤

||x|| - ||y|| ||x - y|| )        ⇒ ≤ → (1

Interchanging x and y ,

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y||⇒ ≤

||x|| - ||y|| - ||x - y|| 2)⇒  ≥ → (

Combining (1) and (2)

- ||x - y|| ||x|| - ||y|| ||x - y||≤ ≤

That is ,

| ||x ||- ||y|| | ||x - y||≤

Take , then whenever ||x - y|| < , | ||x|| -|| y|| |<δ = ε δ  ε
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Therefore || || is a uniformly continuous function .

➢ Continuity of addition and scalar multiplication

To show that + : X X X and : K X X are continuous functions.× → · × →

Let (x,y) X X . To show that + is continuous at (x ,y) , that is ,  to show∈  ×
that for each (x,y) X X if xn x and yn y in X , then∈ × → →

+(xn , yn) +(x , y) ;→

That is ,
xn + yn x + y .→

Consider
||( xn + yn) - (x + y )|| = ||xn - x + yn - y||

||xn - x|| + ||yn - y||≤

Given xn x and yn y , for each , N1→ → ϵ > 0 ∃ ∋

||xn - x|| < n N1 ,   and N2
ε
2 ∀ ≥ ∃ ∋

||yn - y|| < n N2
ε
2 ∀ ≥

\

Take N = max { N1, N2}

Then ||xn - x|| < and ||yn - y|| < n Nε
2

ε
2 ∀ ≥

Therefore ||(xn + yn) - (x + y)|| + = n N≤ ε
2

ε
2 ε ∀ ≥

That is , xn + yn x + y→

Now to show that : K X X is continuous· × →

Let (k , x) K X∈ ×

13



To show that if kn k and xn x , then knxn kx→ → →

Since kn k   , > 0 N1 |kn - k| < n N1→ ∀ ε ∃ ∋  ε
2

∀ ≥

Since xn x   , > 0 N2 ||xn - x|| < n N2→ ∀ ε ∃ ∋  
ε
2 ∀ ≥

Consider ||knxn - kx|| = ||knxn - kx + xnk - xnk ||

= ||xn (kn - k) + k(xn - x)||

||xn(kn - k)|| + ||k(xn - x)||≤

=  ||xn|| |kn- k| +  |k| ||xn - x||

||xn|| + |k|≤ ε
2

ε
2

∴   knxn kx→

➢ Examples of normed space

1)   Spaces Kn (K = R or C)

For n = 1 ,  the absolute value of function | | is a norm on K , since k K∀ ∈

We have ,

||k|| = ||k || = |k| ||1|| , by definition .· 1

But ||1|| is a positive  scalar .

∴ ||k|| is a positive scalar multiple of the absolute value function .

∴  any norm on K is a positive scalar multiple of the absolute value
function

For n > 1 , let p be a real number≥ 1

14



Kn = { ( x(1) , x(2) , . . . , x(n) ) : x(i) K , i = 1 , 2 , . . . , n }∈

For x Kn , that is , x = ( x(1) , x(2) , . . . , x(n) ) ,  define∈

||𝑥||
𝑝

= (|𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝

Then || ||p is a norm on Kn

When p = 1 ,

Then , ||x||1 = |x(1)| + |x(2)| + . . . + |x(n)|

Since |x(i)| 0 i = 1 , 2 , . . . , n   , ||x||1 0≥ ∀ ≥

And ||x||1 = 0 |x(1)| + . . .  +|x(n)| = 0⇔

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0                          ⇔

Now ||kx||1 =  |kx(1)| + |kx(2)| + . . . + |kx(n)|

= |k| |x(1)| + . . . + |k| |x(n)|

= |k| ( |x(1)| + . . . + |x(n)| )

= |k| ||x||1

||x + y||1 = |(x + y)(1)| + . . . + |(x + y)(n)|

= |x(1) + y(1)| + . . . + |x(n) + y(n)|

|x(1)| + |y(1)| + . . . + |x(n)| + |y(n)|≤

= |x(1)| + . . . + |x(n)| + |y(1)| + . . . + |y(n)|

= ||x||1 + ||y||1

15



Consider 1<p<∞

Now  , ||𝑥||
𝑝

= ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

Since x(i) 0 i , we have ||x||p 0| |𝑝 ≥ ∀ ≥

And ||𝑥||
𝑝

= 0⇔( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝 = 0

= 0 i⇔ |𝑥(𝑖)|𝑝 ∀

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0 .                          ⇔
Now

||𝑘𝑥||
𝑝

= ( |𝑘𝑥(1)|𝑝 +.  .  .  + |𝑘𝑥(𝑛)|𝑝)1/𝑝

= ( |𝑘|𝑝 |𝑥(1)|𝑝 +.  .  .  + |𝑘|𝑝 |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ||𝑥||
𝑝 .

              ||𝑥 + 𝑦||
𝑝

= ( |𝑥(1) + 𝑦(1)|𝑝 +.  .  .  + |𝑥(𝑛) + 𝑦(𝑛)|𝑝 )1/𝑝

We have by Minkowski’s inequality ,

+
𝑖=1

𝑛

∑ |𝑥(𝑖) + 𝑦(𝑖)|𝑝( )1/𝑝

≤
𝑖=1

𝑛

∑ |𝑥(𝑖)|𝑝( )
1/𝑝

𝑖=1

𝑛

∑ |𝑦(𝑖)|𝑝( )1/𝑝

Then

16



||𝑥 + 𝑦||
𝑝
 ≤  |𝑥(1)|𝑝 +.  .  . + |𝑥(𝑛)|𝑝( )

1/𝑝
+  |𝑦(1)|𝑝 +.  .  .  + |𝑦(𝑛)|𝑝( )

1/𝑝

= ||𝑥||
𝑝

+ ||𝑦||
𝑝

Then , for 1 p< , is a norm on Kn≤ ∞ || ||
𝑝

When p = , define∞ ||𝑥||
∞

= 𝑚𝑎𝑥 { |𝑥(1)| , |𝑥(2)| ,.  .  .  , |𝑥(𝑛)| }

Then it is a norm on Kn

0 since each values |x(i)| 0||𝑥||
𝑝 

≥ ≥

So that

max {|x(i)| , i=1, . . . , n} 0≥

= 0||𝑥||
∞

= 0 ⇔𝑚𝑎𝑥 { |𝑥(𝑖)| : 𝑖 = 1,.  .  .  , 𝑛 }

|x(i)| = 0 i⇔ ∀

x(i) = 0 , i⇔ ∀

x = 0⇔

||𝑘𝑥||
∞

 =  𝑚𝑎𝑥 { |𝑘𝑥(1)| ,.  .  .  , |𝑘𝑥(𝑛)| }

= max { |k| |x(1)| , . . . , |k| |x(n)|}

= |k| max {|x(1)| , . . . , |x(n)|}

= |k| ||x||
∞

||x + y| = max { |x(1) + y(1)| , . . . , |x(n) + y(n)| }|
∞

max { |x(1)| + |y(1)| , . . . , |x(n)| + |y(n)| }≤

17



max { |x(1)| , . . . , |x(n)| } + max { |y(1)| , . . . , |y(n)| }≤

= ||x| + ||y||
∞

|
∞

2) Sequence space

Let 1 p < , = { x = ( x(1) , x(2) , . . . ) ;  x(i) K and x(j) < } , that is , is the≤ ∞ 𝑙𝑝 ∈
𝑗=1

∞

∑ | |𝑝 ∞ 𝑙𝑝

space of p-summable scalar sequences in K . For x = (x(1) , x(2) , . . . ) ,∈ 𝑙𝑝

let ||x||p = ( |x(1)|p + |x(2)|p + . . . )1/p . Then it is a norm on lp.

That is , || ||p is a function from lp to R .

If p = 1 , then l1 is a linear space and ||x||1 = ( |x(1)| + |x(2)| + . . . ) is a norm on l1

Let p = . Then is the linear space of all bounded scalar sequences . And ,∞ 𝑙∞

||x = sup { |x(j)| : j = 1, 2, 3, . . . }||
∞

Then is a norm on|| ||
∞

𝑙∞
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   CHAPTER 2

THEOREMS ON NORMED SPACES

a) Let  Y  be a subspace of a normed space X , then Y and its closure  are normed spaces with𝑌
the induced norm.

b) Let Y be  a closed subspace of a normed space X , for x +Y in the quotient space X/Y, let
|||x +Y||| = inf { ||x+y|| : y Y} . Then |||   ||| is a norm on X/Y , called the quotient norm.∈

        A sequence (xn + Y) converges to x + Y in X/Y iff there is a sequence (yn) in Y , (xn+ yn)
converges to x in X.

c) Let || ||pbe a norm on the linear space Xp , j = 1,2,…. . Fix p such that 1 p≤ ≤∞

For x = (x(1) , x(2) , … , x(m))   that  is the product space X =X1× X2 × …× Xm ,

  Let , if 1  p <||𝑥||
𝑝
 =   ||𝑥(1)||

1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

≤ ∞

 ||x||p = max { ||x(1)||1 , … , ||x(m)||m }   ,   if p = .∞

 Then ||   ||p is a norm on X.

A sequence (xn) converges to x in  X (xn(j)) converges to x(j) in Xj      j=1,2,…,m.  ⇔ ∀

Proof:

a) Since X is a normed space, there is a norm on X to Y . Since  Y is a subspace of X,   

||  ||y: Y   R is a function. To show that ||  ||y is a norm on Y.       →

For y  Y ,    || y||Y  = ||y|| , then∈

||y||Y   ( ∵||y||  0 )    and     ||y||Y = 0 y = 0≥ 0  ≥ ⇔

||ky||Y = ||ky|| = |k| ||y|| = |k| ||y||y .

Let y1 , y2  Y.  Then ,∈

||𝑦
1

+ 𝑦
2
||

𝑦
= ||𝑦

1
+ 𝑦

2
|| ≤ ||𝑦

1
|| + ||𝑦

2
|| = ||𝑦

1
||

𝑦
+ ||𝑦

2
||

𝑦

Now the continuity of addition and scalar multiplication shows that  is a subspace of X, since if𝑌
xn  x and yn y ,   xn , yn   , then→ → ∈ 𝑌

xn + yn  x + y (by continuity of addition)    and→
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kxn  kx (by continuity of scalar Xn) .→

Since   is closed , x + y and kx .  Therefore   X.𝑌 ∈ 𝑌 ∈ 𝑌 𝑌 ≤

  norm on X induces a norm on Y and∴ 𝑌

b) X/Y , the quotient space equals X/Y={ x + Y : x X }.∈

|||x + y||| = inf { ||x + y|| : y Y }∈

Claim: |||  ||| is a norm on X/Y , called quotient norm

• Let x X ,∈

|||x + Y||| = inf { ||x + y|| : y Y }   0.∈ ≥

|||x + Y|||  0 .∴ ≥

   If |||x + y||| = 0 ( 0 in X/Y is Y) , then there is a sequence (yn) in Y    ∋

 ||x + yn ||  0→

                           ⇒                x + yn  0→

                           ⇒                 yn  -x→

Since yn Y and Y is closed∈

-x Y   ⇔ x Y ( Y is a subspace)∈ ∈ ∵

                    ⇔x + Y = Y , zero in X/Y.

• For k K ,∈

|||k(x + Y)||| = |||kx + Y|||

                                          = inf { ||k(x + y)|| : y Y}∈

                                          = inf { |k| ||x + y|| : y Y}∈

                                          = |k| inf { ||x + y|| : y Y}∈

= |k| |||x + Y||| .

• Let x1 , x2 X . Then∈

               |||x1 + Y||| = inf { ||x1 + y|| : y Y } . Then y1  Y∈ ∃ ∈ ∋

               |||x1 + Y||| +   >  ||x1 + y1|| ,  and
ε
2
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                  |||x2 + Y||| = inf { ||x2 + y|| : y Y}  , Then   y2 Y  ∈ ∃ ∈ ∋

                                |||x2 + Y||| +   >  ||x2 + y2|| .
ε
2

||x1 + y1 + x2 + y2 ||     ||x1 + y1|| + ||x2 + y2||≤

  |||x1 + Y||| + + |||x2 + Y||| +≤ ε
2

ε
2

Let y = y1 + y2 Y . Then ,∈

                    ||(x1+x2) + y||   |||x1 + Y||| + |||x2 + Y||| + ℇ    —(1)≤

Now ,  |||(x1 + Y) + (x2 + Y)||| = |||x1 + x2 + Y|||

                                                =inf { ||x1 + x2 + y|| : y Y }∈

                                             < ||x1 + x2 + y||

                                           |||x1 + Y||| + |||x2 + Y||| + ℇ          (by (1) )≤

since ℇ is arbitrary , we have  

|||(x1 + Y) + (x2 + Y)|||   |||x1 + Y||| + |||x2 + Y|||≤

∴ |||   |||  is a norm on X/Y.

Let (xn + Y) be a sequence in X/Y . Assume that (yn) is a sequence in Y   (xn + yn) converges∋
to x in X.

That is ,  (xn - x + yn) converges to 0 .      —(1)

Claim: (xn + Y) converges to x + Y.

  Consider

|||xn + Y -  (x+Y)||| = |||(xn - x) + Y|||

                                                       = inf { ||xn - x + yn|| : y Y }∈

                                                        ||xn - x + yn||      yn Y .≤ ∀ ∈

Then by (1) , xn + Y converges to x + Y in X/Y.

   Conversely assume that the sequence (xn + Y)  x + Y in X/Y.→

   Consider |||xn + Y - (x + Y)||| = |||xn - x + Y|||

                                                    = inf { ||xn -x + y|| : y Y }∈

Then we can choose yn Y ∈ ∋
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                       ||xn - x + yn|| <  |||(xn - x) + Y||| + ,  n=1,2,3,….1
𝑛

Since xn+Y  x+Y , we get→

             (xn - x + yn) converges to zero as n →∞

That is , (xn + yn) converges to x in X as n →∞

c) Consider   1  p < ≤ ∞

          Given that

||𝑥||
𝑝 

= (||𝑥(1)||
1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝 )1/𝑝

  Clearly , ||x||p  0 .  ≥

  Since each ||𝑥(𝑖)||
𝑖
𝑝 ≥ 0 .

              ||x||p = 0  ⇔   = 0   ∀ j = 1, . . . ,m|𝑥(𝑗)|
𝑗
𝑝

                                         ⇔  x(j) = 0           ∀ j.

                                         ⇔  x = (x(1), . . . ,x(m)) = 0

                    ||kx||p =                            ||𝑘𝑥(1)||
1
𝑝 +.  .  . + ||𝑘𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

   =  |𝑘|𝑝||𝑥(1)||
1
𝑝 +.  .  . + |𝑘|𝑝||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                            = |𝑘|  ||𝑥(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

, k K and x X= |𝑘| ||𝑥||
𝑝

∈ ∈

Now, ||𝑥 + 𝑦||
𝑝

=  ||𝑥(1) + 𝑦(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚) + 𝑦(𝑚)||

𝑚
𝑝( )1/𝑝

  (by Minkowski’s inequality)

                                 ≤

 ||𝑥(1)||
1

+ ||𝑦(1)||
1( )𝑝 +.  .  .  +  ||𝑥(𝑚)||

𝑚
+ ||𝑦(𝑚)||

𝑚( )𝑝( )1/𝑝

                                 +          (Minkowski’s inequality )≤
𝑗=1

𝑚

∑ ||𝑥(𝑗)||
𝑗
𝑝( )1/𝑝

𝑗=1

𝑚

∑ ||𝑦(𝑗)||
𝑗
𝑝( )1/𝑝
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                                =  ||𝑥(1)||
1
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                                = ||x||p + ||y||p

        Now suppose  p =      ∞

  ||x||∞  = max { ||x(1)||1 , . . . , ||x(m)|| m }

||x||∞  0   Since ||x(j)||   0 ,       ∀ j≥ ≥

||x||∞  = 0          ⇔  ||x(m)|| = 0      ∀ m

                                       ⇔  x(m) = 0      ∀ m

                                       ⇔ x = 0

||kx||∞  = max { ||kx(1)||1 , . . . ,  ||kx(m)||m }

               = |k| max { ||x(1)||1 , . . . , ||x(m)||m }       

   =  |k| ||x||∞

||x + y||∞ = max { ||x(1) + y(1)||1, . . . , ||x(m) + y(m)||m }

                  max { ||x(1)||1 + ||y(1)||1 , . . . , ||x(m)||m + ||y(m)||m }≤

                                =  max { ||x(1)||1 , . . . ,  ||x(m)||m }   + max { ||y(1)||1 , . . . , ||y(m)||m }

                                = ||x||∞ + ||y||∞

We now consider  ,  

||𝑥
𝑛

− 𝑥(1)||
𝑝

=  ||𝑥
𝑛
(1) − 𝑥(1( )||

1
𝑝 +.  .  . + ||𝑥

𝑛
(𝑚) − 𝑥(𝑚)||

𝑚
𝑝 )

1/𝑝

Then  

xn  x in X      ⇔  ||xn - x ||p   0 → →

                                        ⇔  ||xn(j) - x(j)  0||
𝑗
𝑝 →

                                        ⇔  xn(j) - x(j)  → 0

                                        ⇔  xn(j) → x(j) in X j .∀
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RIESZ  LEMMA

Let be a normed space . be a closed subspace of and . Let be a real number𝑋 𝑌 𝑋 𝑋 ≠ 𝑌 𝑟
such that . Then there exist some xr X such that ||xr||  = 1 and0 < 𝑟 < 1 ∈

r<dist ( xr , Y ) 1≤

Proof :

We have ,

dist (x , Y) = inf { d(x , y) : y Y}∈

= inf { ||x - y|| : y Y}∈

Since Y X , consider x X x Y.≠ ∈ ∋ ∉

If dist(x , Y) = 0 , then ||x - y|| = 0 x = Y ( ∵ Y is closed )⇒ ∈𝑌

Therefore ,

dist (x , Y) 0≠

That is ,

dist (x , Y) > 0

Since 0 < r < 1  , > 1
1
𝑟

> dist (x , Y)⇒
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟

That is  , is not a lower bound of { ||x - y|| : y Y }
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟 ∈

Then y0 Y ||x - y0|| < (1)∃ ∈ ∋
𝑑𝑖𝑠𝑡(𝑥 , 𝑌)

𝑟    →

Let xr = . Then xr X
𝑥 −  𝑦

0

||𝑥 − 𝑦
0
|| ∈

( ∵y0 Y , x Y x - y0 X and ||x - y0|| 0 )∈ ∉ ⇒ ∈ ≠
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Then ||xr|| =|| || = = 1
𝑥 − 𝑦

0

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

Now to prove r < dist( ) 1𝑥
𝑟
, 𝑌 ≤

We have dist(xr , Y) = inf { ||xr - y|| : y Y }∈

||xr - y|| y Y≤ ∀ ∈

In particular, 0 , so that dist(xr , Y) ||xr - 0|| = 1∈ 𝑌 ≤

That is ,

dist (xr , Y) 1≤

Now ,

dist (xr , Y) = dist ( , Y )
𝑥 − 𝑦

0

||𝑥−𝑦
0
||

= dist ( x - y0 , Y)
1

||𝑥−𝑦
0
||

= inf { ||x - y0 - y|| : y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= inf {||x - (y0+ y)|| : y0 + y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= dist (x , Y)
1

||𝑥−𝑦
0
||

> dist (x , Y)    by (1)
𝑟

𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

dist (xr , Y) > r⇒

That is ,

r < dist (xr , Y) 1≤
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CONCLUSION

This project discusses the concept of normed linear space that is fundamental to
functional analysis . A normed linear space is a vector space over a real or complex
numbers ,on which the norm is defined . A norm is a formalization and generalization to
real vector spaces of the intuitive notion of “length” in real world

In this project , the concept of a norm on a linear space is introduced and thus
illustrated . It mostly includes the properties of normed linear spaces and different proofs
related to the topic.
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INTRODUCTION 

         In mathematics, a group is a set equipped with a binary operation that combines any two 

elements to form a third element in such a way that the three conditions called group axioms are 

satisfied , namely associativity , identity and invertability. 

           Let us take a moment to review our present stockpile of groups. Starting with finite 

groups, we have the cyclic group ℤ𝑛 ,the symmetric group 𝑆𝑛 , and the alternating group 𝐴𝑛 for 

each positive integer n. We also have the dihedral group 𝐷𝑛 and klein 4-group  . Of course we 

know that subgroups of these groups exists. Turning to infinite groups , we have ℤ, ℝ, ℂ under 

addition , and their non zero elements under multiplication we also have the group 𝑆𝐴 of all 

permutation of an infinite set 𝐴 , as well as various groups formed from matrices . 

          One purpose of this section  is to show a way to use known groups as building blocks to 

form more groups. Given two groups 𝐺 and 𝐻, it is possible to construct a new group from the 

cartesian product of 𝐺 and 𝐻 . Conversely , given a large group , it is sometimes possible to 

decompose the group ; that is , a group is sometimes isomorphic to the direct product of two 

smaller groups. Rather than studying a large group , it is often easier to study the component 

group of that group. 
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PRELIMINARY 

         Groups : A non empty set 𝐺 together with an operation ∗ is said to be a group , denote by 

(𝐺 ,∗) , if it satisfy the following axioms. 

• Closure property 

• Associative property 

• Existence of identity 

• Existence of inverse 

                   

Abelian group 

         A group (𝐺 ,∗) is said to be abelian if it satisfies  commutative law . 

Finite group 

         If the underlying set G of the group  (𝐺 ,∗) consist of finite number of elements , then the 

group is finite group . 

Infinite group  

         A group that is not finite is an infinite group . 

Order of a group : The number of elements in a finite  group is called the order of the group , 

denoted by 𝑂(𝐺) . 

Example 

          Show that the set of integers ℤ is a group with respect to the operation of addition of 

integers. 

ℤ =  {… … … . −3, −2, −1,0,1,2,3, … … … } 

Since the addition of two integers gives an integer , it satisfy closure property .  



3 
 

If 𝑎, 𝑏, 𝑐 𝜖 ℤ then the (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) , hence associativity holds .  

There is a number 0 𝜖 ℤ such that 0 + 𝑎 = 𝑎 + 0 , hence identity exists 

If 𝑎 𝜖 ℤ then there exists – 𝑎 𝜖 ℤ , such that −𝑎 +  𝑎 =  0 =  𝑎 + −𝑎 

Therefore inverse exist .  

Therefore ℤ is a group under addition .  

Subgroup   

A subset 𝐻 of 𝐺 is said to be a subgroup of 𝐺 if 𝐻 itself is a group under the same operation in 

𝐺. 

There are two different types of group structure of order 4 . 

 ℤ4 =  { 0,1,2,3} 

Klein 4 – group , 𝑉 = {𝑒, 𝑎, 𝑏, 𝑐} 

Cyclic group 

     A group 𝐺 is cyclic if there is some element ‘𝑎’ in 𝐺 that generate 𝐺. And the element ‘𝑎’ is 

called generator of  𝐺.  

Group Homomorphism  

    A function Ѱ: 𝐺 →  𝐺′ is a group homomorphism ( or simply homomorphism ). 

If Ѱ(𝑎𝑏) = Ѱ(𝑎) Ѱ(𝑏) hold for all 𝑎 , 𝑏 ∈ 𝐺 , is called homomorphism property . 

Isomorphism  

    A one  to  one and onto homomorphism Ѱ: 𝐺 → 𝐺′ is called an isomorphism .  
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CHAPTER – 1 

 

DIRECT PRODUCT OF GROUPS 

 

Definition 

The Cartesian product of sets  𝑆, 𝑆2, … … . , 𝑆𝑛 is the set of all ordered n-tuples (𝑎1, 𝑎2, … … . , 𝑎𝑛), 

where 𝑎𝑖  ∈  𝑆𝑖 for 𝑖 = 1,2,3, … … . , 𝑛. The Cartesian product is denoted by either 

 𝑆1 × 𝑆2 × … … .× 𝑆𝑛  or  by Π𝑖=1
𝑛 𝑆𝑖. 

Let 𝐺1, 𝐺2, … … . , 𝐺𝑛 be groups and let us use multiplicative notation for all the group operations. 

If we consider 𝐺𝑖 as a set , 𝑖 = 1,2, … … . 𝑛 . we have the products 𝐺1 × 𝐺2 × … … . ,× 𝐺𝑛 we 

denote it by  Π𝑖=1
𝑛 𝐺𝑖. This product is called direct-product of groups. We can make Π𝑖=1

𝑛 𝐺𝑖 into a 

group by means of a binary operation of multiplication by components. 

 

Theorem 

Let 𝐺1, 𝐺2, … … . , 𝐺𝑛 be groups. For (𝑎1, 𝑎2, … … . , 𝑎𝑛) and (𝑏1, 𝑏2, … … . , 𝑏𝑛) in Π𝑖=1
𝑛 𝐺𝑖 define ; 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛) = (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) 

Then Π𝑖=1
𝑛 𝐺𝑖 is a group. 
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Proof 

 We have , 

Π𝑖=1
𝑛 𝐺𝑖 = {(𝑎1, 𝑎2, … … . , 𝑎𝑛) ∶  𝑎𝑖 ∈  𝐺𝑖} 

(1) Closure property 

Let  (𝑎1, 𝑎2, … … . , 𝑎𝑛), (𝑏1, 𝑏2, … … . , 𝑏𝑛)  ∈  Π𝑖=1
𝑛 𝐺𝑖  

And we have , 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛) = (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) 

Here 𝑎𝑖 ∈ 𝐺𝑖 and 𝑏𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛 

∵  𝐺𝑖 is a group , 𝑎𝑖𝑏𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛 

⇒ (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

i.e. Π𝑖=1
𝑛 𝐺𝑖 is closed under the binary operation. 

(2) Associativity 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛), (𝑏1, 𝑏2, … … . , 𝑏𝑛), (𝑐1, 𝑐2, … … . , 𝑐𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖  

We have, 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛)(𝑐1, 𝑐2, … … . , 𝑐𝑛) 

   = (𝑎1𝑏1𝑐1 , 𝑎2𝑏2𝑐2, … … . , 𝑎𝑛𝑏𝑛𝑐𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

[(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛)](𝑐1, 𝑐2, … … . , 𝑐𝑛) 

= [𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛](𝑐1, 𝑐2, … … . , 𝑐𝑛) 

= [(𝑎1𝑏1)𝑐1, (𝑎2𝑏2)𝑐2, … … . , (𝑎𝑛𝑏𝑛)𝑐𝑛] 

= [𝑎1(𝑏1𝑐1), 𝑎2(𝑏2𝑐2), … … . , 𝑎𝑛(𝑏𝑛𝑐𝑛)] 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛)[𝑏1𝑐1, 𝑏2𝑐2, … … . , 𝑏𝑛𝑐𝑛] 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛)[(𝑏1, 𝑏2, … … . , 𝑏𝑛)(𝑐1, 𝑐2, … … . , 𝑐𝑛)] 
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Hence associativity holds. 

(3) Existence of identity 

If 𝑒𝑖 is the identity element in 𝐺𝑖. 

Then, 

(𝑒1, 𝑒2, … … . , 𝑒𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

Also for , 

 (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖, 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑒1, 𝑒2, … … . , 𝑒𝑛) = (𝑎1𝑒1, 𝑎2𝑒2, … … . , 𝑎𝑛𝑒𝑛) 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛) 

∴ (𝑒1, 𝑒2, … … . , 𝑒𝑛) is the identity element ‘𝑒’ in Π𝑖=1
𝑛 𝐺𝑖 

(4) Existence of inverse 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

Here 𝑎𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛. 

Since 𝐺𝑖 is a group , 

∃ an inverse element 𝑎𝑖
−1 in 𝐺𝑖 : 𝑎𝑖𝑎𝑖

−1 = 𝑒𝑖           𝑖 = 1,2, … … . , 𝑛 

Clearly,                  (𝑎1
−1, 𝑎2

−1, … … . , 𝑎𝑛
−1) ∈ Π𝑖=1

𝑛 𝐺𝑖   & 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑎1
−1, 𝑎2

−1, … … . , 𝑎𝑛
−1) = (𝑒1, 𝑒2, … … . , 𝑒𝑛)  

Hence Π𝑖=1
𝑛 𝐺𝑖 is a group. 
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Note 

If the operation of each 𝐺𝑖 is a commutative. We sometimes use additive notation in Π𝑖=1
𝑛 𝐺𝑖 and 

refer to Π𝑖=1
𝑛 𝐺𝑖 as the direct sum of the group 𝐺𝑖. The notation ⨁𝑖=1

𝑛 𝐺𝑖 , especially with abelian 

groups with operation +. 

The direct sum of abelian groups 𝐺1, 𝐺2, … … . , 𝐺𝑛 may be written 𝐺1⨁𝐺2⨁ … … ⨁𝐺𝑛 

• Direct product of abelian group is abelian 

Example 

Q. Check whether ℤ2 × ℤ3 is cyclic or not. 

ℤ2 = {0,1} 

ℤ3 = {0,1,2} 

ℤ2 × ℤ3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)} 

Consider, 

1(1,1) = (1,1) 

2(1,1) = (1,1) + (1,1) = (0,2) 

3(1,1) = (1,1) + (1,1) + (1,1) = (1,0) 

4(1,1) = 3(1,1) + (1,1) = (1,0) + (1,1) = (0,1) 

5(1,1) = 4(1,1) + (1,1) = (0,1) + (1,1) = (1,2) 

6(1,1) = 5(1,1) + (1,1) = (1,2) + (1,1) = (0,0) 

∴ (1,1) is a generator of ℤ2 ×  ℤ3 

∴  ℤ2 × ℤ3 is a cyclic group generated by (1,1). 
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Q. Check whether ℤ3 × ℤ3 is cyclic or not. 

 ℤ3 = {0,1,2} 

ℤ3 × ℤ3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)} 

1(0,1) = (0,1) 

2(0,1) = (0,2) 

3(0,1) = (0,3) = (0,0)            ∴  order (0,1) = 3 

1(0,2) = (0,2) 

2(0,2) = (0,4) = (0,1) 

3(0,2) = (0,6) = (0,0)           ∴  order (0,2) = 3 

Every element added to itself three times gives the identity. Thus no element can 

generate the group. Hence ℤ3 ×  ℤ3 is not cyclic. 

similarly ℤ𝑚 × ℤ𝑚 is not cyclic for any 𝑚. 

 

Theorem 

The group ℤ𝑚 × ℤ𝑛 is cyclic and is isomorphic to ℤ𝑚𝑛 if and only if 𝑚 and 𝑛 are relatively 

prime, that is, the gcd of 𝑚 and 𝑛 is 1. 

Proof 

Suppose ℤ𝑚 × ℤ𝑛 is cyclic and isomorphic to ℤ𝑚𝑛. 

To show that 𝑚 and 𝑛 are relatively prime. 

Suppose not, let d be the 𝑔𝑐𝑑 of 𝑚 and 𝑛. 

So that 𝑑 > 1 
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Consider 
𝑚𝑛

𝑑
 , which is an integer since 𝑑|𝑚 and 𝑑|𝑛 

Let (𝑟, 𝑠) be an arbitrary element of ℤ𝑚 ×  ℤ𝑛, add (𝑟, 𝑠) repeatedly 
𝑚𝑛

𝑑
 times 

(𝑟, 𝑠) + (𝑟, 𝑠)+, … … . , +(𝑟, 𝑠)} 𝑚𝑛

𝑑
𝑡𝑖𝑚𝑒𝑠 = (0,0) 

∴ no element of ℤ𝑚 × ℤ𝑛 having order 𝑚𝑛. ∴ no element of ℤ𝑚 × ℤ𝑛 can generate ℤ𝑚 ×  ℤ𝑛 

which is not possible. ∵  ℤ𝑚 × ℤ𝑛 is cyclic. Hence 𝑔𝑐𝑑(𝑚, 𝑛) = 1. 

i.e. 𝑚 and 𝑛 are relatively prime. 

Conversely, suppose 𝑚 and 𝑛 are relatively prime, i.e. gcd(𝑚, 𝑛) = 1 

To show that ℤ𝑚 × ℤ𝑛 is cyclic. 

If ℤ𝑚 ×  ℤ𝑛 is cyclic, then it is isomorphic  to ℤ𝑚𝑛, ∵  ℤ𝑚 × ℤ𝑛 has 𝑚𝑛 elements. 

Consider the cyclic subgroup of ℤ𝑚 × ℤ𝑛 generated by the element (1,1).The order of this 

cyclic subgroup is the smallest power of (1,1),that gives the identity (0,0). Here taking a power 

of (1,1) in our additive notation will involve adding (1,1) to itself repeatedly. 

Consider (1,1) + (1,1)+, … … . , +(1,1) 

If we add first coordinates 𝑚 times , we get zero. 

∴ order of first coordinate = 𝑚. 

Similarly , Order of second coordinate = 𝑛. 

The two coordinates together become zero. If we add them 𝑙𝑐𝑚(𝑚, 𝑛) times. 

∵ gcd(𝑚, 𝑛) = 1, We get the 𝑙𝑐𝑚 = 𝑚𝑛. 

i.e. (1,1) generates a cyclic subgroup of ℤ𝑚 ×  ℤ𝑛 of order 𝑚𝑛 , which is the order of the whole 

group. 

⇒  ℤ𝑚 ×  ℤ𝑛 =< (1,1) > 
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⇒  ℤ𝑚 ×  ℤ𝑛 is cyclic. 

 

Corollary 

The group ⨅𝑖=1
𝑛 ℤ𝑚𝑖

 is cyclic and isomorphic to ℤ𝑚1𝑚2…….𝑚𝑛
 if and only if the numbers 𝑚𝑖 for 

𝑖 = 1,2, … … . , 𝑛 are such that the 𝑔𝑐𝑑 of any two of them is 1. 

 

Example  

If 𝑛 is written as a product of powers of distinct prime numbers , as in , 

𝑛 = (𝑝1)𝑛1 . (𝑝2)𝑛2 … … . (𝑝𝑛)𝑛𝑟 

Then ℤ𝑛 is isomorphic to ℤ(𝑝1)𝑛1 × ℤ(𝑝2)𝑛2 × … … .× ℤ(𝑝𝑟)𝑛𝑟. 

In particular , ℤ72 is isomorphic to ℤ8 × ℤ9. 

Consider set of integers ℤ, cyclic subgroup of ℤ is of the form 𝑛ℤ , 𝑛 ∈ ℤ. Consider 2ℤ and 3ℤ , 

then < 2 > ∩ < 3 > = < 6 > 

∴ if we take 𝑟ℤ , 𝑠ℤ of ℤ , then the 𝑙𝑐𝑚(𝑟, 𝑠) =generator of < 𝑟 > ∩ < 𝑠 > 

Using this we can define the 𝑙𝑐𝑚 of the positive integers. 

 

Definition 

Let 𝑟1, 𝑟2, … … . , 𝑟𝑛 be positive integers. Their least common multiple (abbreviated lcm ) is the 

positive generator of the cyclic group of all common multiples of the 𝑟𝑖 , that is the cyclic group 

of all integers divisible by each 𝑟𝑖 for 𝑖 = 1,2, … … . , 𝑛. 
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Theorem 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ ⨅𝑖=1
𝑛 𝐺𝑖.  

If 𝑎𝑖 is of finite order 𝑟𝑖 in 𝐺𝑖 , then the order of (𝑎1, 𝑎2, … … . , 𝑎𝑛) in ⨅𝑖=1
𝑛 𝐺𝑖 is equal to the least 

common multiple of all the 𝑟𝑖. 

 

Proof 

Given,  

order of 𝑎1 = 𝑟1 ⇒ 𝑎1
𝑟1 = 𝑒1 in 𝐺1 

            

order of 𝑎2 = 𝑟2 ⇒ 𝑎2
𝑟2 = 𝑒2 in 𝐺2 

            . 

            . 

            . 

            order of 𝑎𝑛 = 𝑟𝑛 ⇒ 𝑎𝑛
𝑟𝑛 = 𝑒𝑛 in 𝐺𝑛. 

We have to find a power 𝑘 for (𝑎1, 𝑎2, … … . , 𝑎𝑛).  

So that (𝑎1, 𝑎2, … … . , 𝑎𝑛)𝑘 = (𝑒1, 𝑒2, … … . , 𝑒𝑛). 

The power must simultaneously be a multiple of 𝑟1 , multiple of 𝑟2 and so on. But 𝑘 is the least 

positive integers having the above property. 

∴ 𝑘 = 𝑙𝑐𝑚(𝑟1, 𝑟2, … … . , 𝑟𝑛). 

 

Q. Find the order of (8,4,10) in the group ℤ12 × ℤ60 × ℤ24. 

𝑂(8) = 3 in 𝑍12 
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𝑂(4) = 15 in 𝑍60 

𝑂(10) = 12 in 𝑍24 

      𝑂(8,4,10) = 𝑙𝑐𝑚(3,15,12) = 60 

 

Q. Find a generator of ℤ × ℤ2 

ℤ × ℤ2 = {(𝑛, 0), (𝑛, 1): 𝑛 ∈ ℤ} 

(𝑛, 0) = 𝑛(1,0) 

(𝑛, 1) = (𝑛, 0) + (0,1) = 𝑛(1,0) + (0,1) 

∴ ℤ × ℤ2 is generated by {(1,0), (0,1)} 

In general , ℤ × ℤ𝑛 is generated by , 

{(1,0,0, … … . ,0), (0,1,0, … … . ,0), … … . , (0,0, … … . ,1)} 

 

Q. Find the order of (3,10,9) in (ℤ4, ℤ12, ℤ15) 

𝑂(3) = 4 in ℤ4 

𝑂(10) = 6 in ℤ12 

𝑂(9) = 5 in ℤ15 

∴ 𝑂(3,10,9) = 𝑙𝑐𝑚(4,6,5) 

                     = 60 

∴ order of (3,10,9) in ℤ4 × ℤ12 × ℤ15 is 60. 
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CHAPTER-2 

 

FUNDAMENTAL THEOREM OF FINITELY GENERATED ABELIAN 

GROUPS 

Every finitely generated abelian group 𝐺 is isomorphic to a direct product of cyclic groups in the 

form, 

ℤ(𝑝1)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 × ℤ × ℤ × ℤ × … … .× ℤ 

Where the 𝑝𝑖 are primes , not necessarily distinct and the 𝑟𝑖 are positive integers. 

 

Remark 

• The direct product is unique except for possible rearrangement of the factors. 

• The number of factors ℤ is unique and this number is called Betti number. 

Example 

Find all abelian groups , upto isomorphism of order 

 1)8 ,        2)16 ,        3)360 

(1) Order 8 

8 = 1 × 8 

            8 = 2 × 4 = 2 × 22 

            8 = 2 × 2 × 2 

3 non-isomorphic groups are ℤ8, ℤ2 × ℤ4,  

ℤ2 × ℤ2 × ℤ2 
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 (2) Order 16 

16 = 1 × 16 = 1 × 24 

16 = 2 × 8  = 2 × 23 

16 = 4 × 4  = 22 × 22 

16 = 2 × 2 × 2 × 2 

16 = 2 × 2 × 22 

ℤ16, ℤ2 × ℤ8, ℤ4 × ℤ4, ℤ2 × ℤ2 × ℤ2 × ℤ2, ℤ2 × ℤ2 × ℤ4 

(3) Order 360 

360 = 22 ⋅ 32 ⋅ 5 

Possibilities are, 

1)  ℤ8 × ℤ9 × ℤ5 

2)  ℤ2 × ℤ4 × ℤ9 × ℤ5 

3)  ℤ2 × ℤ2 × ℤ2 × ℤ9 × ℤ5 

4)  ℤ8 × ℤ3 × ℤ3 × ℤ5 

5)  ℤ2 × ℤ4 × ℤ3 × ℤ3 × ℤ5 

6)  ℤ2 × ℤ2 × ℤ2 × ℤ3 × ℤ3 × ℤ5 

 

Definition 

A group 𝐺 is decomposable if it is isomorphic to a direct product of two proper non-trivial 

subgroups , otherwise 𝐺 is indecomposable. 
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Example 

ℤ6 is decomposable while ℤ5 is indecomposable. 

ℤ6 is isomorphic to ℤ2 × ℤ3  

ℤ𝑚𝑛 is isomorphic to ℤ𝑚 × ℤ𝑛  , if 𝑚 and 𝑛 are prime. 

 

Theorem 

The finite indecomposable abelian groups are exactly the cyclic groups with order a power of a 

prime. 

Proof 

Let 𝐺 be a finite indecomposable abelian group ∵ 𝐺 is finitely generated , we can apply 

fundamental theorem of finitely generated abelian groups. 

∴ 𝐺 ≅ ℤ(𝑝)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 

∵ 𝐺 is indecomposable and ℤ(𝑝𝑖)𝑟𝑖’s are proper subgroups we get in the above , there is only one 

factor say ℤ(𝑝𝑖)𝑟𝑖  which is cyclic group with order a prime power. 

 

Theorem 

If 𝑚 divides the order of a finite abelian group  , then 𝐺 has a subgroup of order 𝑚. 

Proof 

Given 𝐺 is a finite abelian group. 

∴ we can apply Fundamental Theorem , 
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Hence,  

𝐺 ≅ ℤ𝑝1
𝑟1 × ℤ𝑝2

𝑟2 × … … .× ℤ𝑝𝑛
𝑟𝑛  

Here all primes need not be distinct.  

Then, 

𝑂(𝐺) = 𝑝1
𝑟1 . 𝑝2

𝑟2 … … 𝑝𝑛
𝑟𝑛 

Let 𝑚 is a +𝑣𝑒 integer which divides 𝑂(𝐺). 

0 ≤ 𝑠𝑖 ≤ 𝑟𝑖 By theorem , “ let 𝐺 be a cyclic group with 𝑛 elements and generated by 𝑎. Let     

𝑏 ∈ 𝐺 , 𝑏 = 𝑎𝑠 , then ‘ 𝑏’ generates a cyclic subgroup 𝐻 of 𝐺 containing 
𝑛

𝑑
 elements , where           

𝑑 = gcd(𝑛, 𝑠).” 

𝑝𝑖
𝑟𝑖−𝑠𝑖 generates a cyclic subgroup of ℤ

𝑝
𝑖

𝑟𝑖  having order 
𝑝

𝑖

𝑟𝑖

𝑔𝑐𝑑(𝑝
𝑖

𝑟𝑖 ,𝑝
𝑖

𝑟𝑖−𝑠𝑖)
 

                                                                                       =
𝑝

𝑖

𝑟𝑖

𝑝
𝑖

𝑟𝑖−𝑠𝑖
= 𝑝𝑖

𝑠𝑖 

∴ 𝑂(< 𝑝𝑖
𝑟𝑖−𝑠𝑖 >) = 𝑝𝑖

𝑠𝑖 

i.e. < 𝑝1
𝑟1−𝑠1 >  is a subgroup of ℤ𝑝1

𝑟1  having order 𝑝1
𝑠1. 

< 𝑝2
𝑟2−𝑠2 >  is a subgroup of ℤ𝑝2

𝑟2  having order 𝑝2
𝑠2. 

………………………………………………………… 

< 𝑝𝑛
𝑟𝑛−𝑠𝑛 >  is a subgroup of ℤ𝑝𝑛

𝑟𝑛  having order 𝑝𝑛
𝑠𝑛 . 

∴ < 𝑝1
𝑟1−𝑠1 > × < 𝑝2

𝑟2−𝑠2 > × … … .× < 𝑝𝑛
𝑟𝑛−𝑠𝑛 >   is a subgroup of ℤ𝑝1

𝑟1 × ℤ𝑝2
𝑟2 × … … .× ℤ𝑝𝑛

𝑟𝑛  

having order 𝑝1
𝑠1 ⋅ 𝑝2

𝑠2 ⋅⋅⋅⋅⋅⋅⋅⋅ 𝑝𝑛
𝑠𝑛 = 𝑚. 
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Theorem 

If 𝑚 is a square free integer , that is 𝑚 is not divisible by the square of any prime . Then every 

abelian group of order 𝑚 is cyclic. 

 

Proof 

Let 𝑚 be a square free integer , then 𝑝𝑖⫮ 𝑚 for every 𝑖 greater than 1 for a prime 𝑝.  

Given 𝐺 is a finite abelian group having order 𝑚 , by fundamental theorem , then  

𝐺 ≅ ℤ(𝑝1)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 

Then,             

𝑂(𝐺) = 𝑝1
𝑟1 ⋅ 𝑝2

𝑟2 ⋅⋅⋅⋅⋅⋅⋅ 𝑝𝑛
𝑟𝑛 

∵ 𝑂(𝐺) is a square free integer , the only possibility   

𝑟1 = 𝑟2 =  … … . . = 𝑟𝑛 = 1 

Then, 

𝐺 ≅ ℤ𝑝1
× ℤ𝑝2

× … … .× ℤ𝑝𝑛
 

     ≅ ℤ𝑝1,𝑝2,…….,𝑝𝑛
 , which is cyclic. 

 

Example 

15 is a square free integer. So an abelian group of order 15 is cyclic.
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CONCLUSION 

Direct product of groups is the product 𝐺1 × 𝐺2, … … . 𝐺𝑛 ,where  each 𝐺𝑖 is a set. We have 

discussed about definition and some properties related to the direct product of  groups. The 

fundamental theorem of finitely generated abelian group helped us to get a deeper understanding 

about the topic. The theorems gives us complete structural information about abelian group, in 

particular finite abelian group. We have also discussed some examples in order to develope more 

intrest in algebra. 
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INTRODUCTION 
 

 

A proper coloring of a graph is an assignment of colors to the vertices of the graph so that  

no two adjacent vertices have the same color. 

 

                     Usually we drop the word “proper” unless other types of coloring are also under  

discussion. Of course, the “colors” don’t have to be actual colors ; may can be any distinct  

labels - integers ,for examples , if a graph is not connected ,  each connected component can  

be colored independently; except where otherwise noted , we assume graphs are  

connected. We also assume graphs are simple in this section. Graph coloring has many  

applications in addition to its intrinsic interest. 

 

                        In the same way the most important concept of graph coloring is utilized in  

resource allocation, scheduling. Also, paths, walks and circuits in graph theory are used in  

tremendous applications say travelling salesman problem, database design concepts,  

resource networking. 

 

                       This project deals with coloring which is one of the most important topics in  

graph theory. In this project there are three chapters. First chapter is coloring . The second  

chapter is chromatic number. The last chapter deals with application of graph coloring. 
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BASIC CONCEPTS 

 

1. GRAPH 

      A graph is an ordered triplet. G=(V(G), E(G), I(G)); V(G) is a non empty set, E(G) is a set 

disjoint from V(G) and I(G) is an incidence map that associates each element of E(G) and  

unrecorded pair of element of V(G). The elements of V(G) are called vertices (or nodes or  

points) of G and the elements of E(G) are Called edges or lines of G. 

 

2. MULTIPLE EDGE / PARALLEL EDGE  

       A set of 2 or more edges of a graph G is called a multiple edge or parallel edge if they  

have the same  end vertices. 

 

3. LOOP 

       An edge for which the 2 end vertices are same is called a loop. 

 

4. SIMPLE GRAPH 

      A graph is simple if it has no loop and no multiple edges. 

 

5. DEGREE 

        Let G be a graph and v € V the number of edge incident at V in G is called the degree or  

vacancy of the vertex v in G. 
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CHAPTER - 1 
 

 

COLORING 
 

              

    Graph coloring is nothing but a simple way of labeling graph components such as  

vertices , edges and regions under some constraints. In a graph, no two adjacent vertices, 

adjacent edges , or adjacent regions are colored with minimum number of colors .This  

number is called the chromatic number and the graph is called properly colored graph. 

                                                  In graph theory coloring is a special case of graph labeling; it is  

an assignment of labels traditionally called “colors” to elements of a graph subject to certain  

constraints. In it simplest form, it is a way of coloring the vertices of a graph such that no  

two adjacent vertices share the same color, it is called vertex coloring. Similarly, edge 

coloring assigns a color to each edge so that no two adjacent edges share the common  

color. 

                                            While graph coloring , the constraints that are set on the graph are  

colors , order of coloring , the way of assigning color , etc.  A coloring is given to a vertex or a  

particular region . Thus, the vertices or regions having same colors form independent sets. 
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VERTEX COLORING 

                     Vertex coloring is an assignment of colors to the vertices of a graph  ‘G ’  such  

that no two adjacent vertices have the same color .Simply put , no two vertices of an edge  

should be of the same color. 

                                          The most common type of vertex coloring seeks to minimize the  

number of colors for a given graph . Such a coloring is known as a minimum vertex coloring , 

and the minimum number of colors which with the vertices of a graph may be colored is  

called the chromatic number .  

 

CHROMATIC NUMBER: 

                             The minimum number of colors required for vertex coloring  of  graph ‘ G ’   

is called as the chromatic number of G , denoted by   X (G) . 

X(G) = 1  iff  ‘ G ’   is a null graph. If  ‘G ’  is not a null graph , then X(G) ≥ 2. 

 

EXAMPLES; 

 

1.                                                                                            2.      

 

 

 

 

  

       Null Graph ( X (G)  = 1 )                                                          Not Null Graph  ( X (G) = 2 ) 
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EDGE COLORING    

                    An edge coloring of a graph G is a coloring of the edges of G such that adjacent  

edges ( or the edges bounding different regions ) receive different colors. An edge coloring 

containing the smallest possible number of colors for a given graph is known as a minimum  

edge coloring. 

                          The edge chromatic number gives the minimum number of colours with which 

graph’s edges can be colored. 

 

 

 

CHROMATIC INDEX 

                     The minimum number of colors required for proper edge coloring of graph is  

called chromatic index. 

A complete graph is the one in which each vertex is directly connected with all  

other vertices with an edge. If the number of vertices of a complete graph is n, then the 

 chromatic index for an odd number of vertices will be n and the chromatic index for even  

number of vertices will be n-1. 
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EXAMPLES; 

1.    

 

 

 

 

 

 

          The given graph will require 3 unique colors so that no two incident edges have the  

Same color. So its chromatic index will be 3. 

 

2.   

 

 

 

 

            The given graph will require 2 unique colors so that no two incident edges have  

the same color. So its chromatic index will be 2. 
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CHAPTER 2 

Chromatic Number 

 

The chromatic number of a graph is the smallest number of colors needed to color the vertices  

of so that no two adjacent vertices share the same color. That is the smallest value of possible 

to obtain a k-coloring. 

• Graph Coloring is a process of assigning colors to the vertices of a graph. 

• It ensures that no two adjacent vertices of the graph are colored with the same color. 

• Chromatic Number is the minimum number of colors required to properly color any graph. 

 

 

Graph Coloring Algorithm 

  

• There exists no efficient algorithm for coloring a graph with minimum number of colors. 

  

However, a following greedy algorithm is known for finding the chromatic number of any given 

graph. 

 

 

Greedy Algorithm 

  

Step-01: 

  

Color first vertex with the first color. 
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 Step-02: 

 Now, consider the remaining (V-1) vertices one by one and do the following- 

 

• Color the currently picked vertex with the lowest numbered color if it has not been used to 
color any of its adjacent vertices. 

• If it has been used, then choose the next least numbered color. 

• If all the previously used colors have been used, then assign a new color to the currently 
picked vertex. 

  

 

Problems Based On Finding Chromatic Number of a Graph 

  

Problem-01: 

  

Find chromatic number of the following graph- 
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Solution- 

  

Applying Greedy Algorithm, we have 

Vertex a b C d e f 

Color C1 C2 C1 C2 C1 C2 

  

From here, 

• Minimum numbers of colors used to color the given graph are 2. 

• Therefore, Chromatic Number of the given graph = 2. 

  

The given graph may be properly colored using 2 colors as shown below- 
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Problem-02: 

  

Find chromatic number of the following graph- 

  

 

 Solution- 

  

Applying Greedy Algorithm, we have- 

  

Vertex a b C d e f 

Color C1 C2 C2 C3 C3 C1 

  

From here, 

• Minimum numbers of colors used to color the given graph are 3. 

• Therefore, Chromatic Number of the given graph = 3. 
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The given graph may be properly colored using 3 colors as shown below- 

  

 

 

Chromatic Number of Graphs 

  

Chromatic Number of some common types of graphs are as follows- 

  

1. Cycle Graph- 
  

• A simple graph of ‘n’ vertices (n>=3) and ‘n’ edges forming a cycle of length ‘n’ is called as a 
cycle graph. 

• In a cycle graph, all the vertices are of degree 2. 

  

Chromatic Number 

• If number of vertices in cycle graph is even, then its chromatic number = 2. 

• If number of vertices in cycle graph is odd, then its chromatic number = 3. 
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Examples- 
 

 

2. Planar Graphs- 
 
A planar graph is a graph that can be embedded in the plane, that is it can be drawn on the 
plane in such a way that its edges intersect only at their endpoint. In other words, it can be 
drawn in such a way that no edges cross each other. 
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A Planar Graph is a graph that can be drawn in a plane such that none of its edges cross each 
other. 

 

Chromatic Number 

Chromatic Number of any Planar Graph is less than or equal to 4 

  

Examples- 

+  

• All the above cycle graphs are also planar graphs. 

• Chromatic number of each graph is less than or equal to 4. 

 

 

https://www.gatevidyalay.com/planar-graphs/
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3. Complete Graphs- 

  

• A complete graph is a graph in which every two distinct vertices are joined by exactly one 
edge. 

• In a complete graph, each vertex is connected with every other vertex. 

• So to properly it, as many different colors are needed as there are number of vertices in the 
given graph. 

  

Chromatic Number 

Chromatic Number of any Complete Graph 

= Number of vertices in that Complete Graph 

  

Examples- 
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4. Bipartite Graphs- 
 
 
A bipartite graph is a graph whose vertices can be divided into two disjoint and independent 
sets U and V such that every edge connects a vertex in U to one in V. Vertex sets U and V are 
usually called the parts of the graph. 

  

• A Bipartite Graph consists of two sets of vertices X and Y. 

• The edges only join vertices in X to vertices in Y, not vertices within a set. 

 

Chromatic Number 

Chromatic Number of any Bipartite Graph 

= 2 

  

Example- 

  

 

https://www.gatevidyalay.com/bipartite-graphs/
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5. Trees- 

  

A tree is an undirected graph in which any two vertices are connected by exactly one path, or 
equivalently a connected acyclic undirected graph. 

 

• A Tree is a special type of connected graph in which there are no circuits. 

• Every tree is a bipartite graph. 

• So, chromatic number of a tree with any number of vertices = 2. 

  

Chromatic Number 

Chromatic Number of any tree 

= 2 

  

Examples- 

  

 

 

https://www.gatevidyalay.com/tree-data-structure-tree-terminology/
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CHAPTER-3 

APPLICATIONS OF GRAPH COLORING 

 

1) Making Schedule or Time Table: 

                         Suppose we want to make an exam schedule for a university. We have list 

different subjects and students enrolled in every subject. Many subjects would have common 

students (of same batch, some backlog students, etc). How do we schedule the exam so that no 

two exams with a common student are scheduled at same time? How many minimum time 

slots are needed to schedule all exams? This problem can be represented as a graph where 

every vertex is a subject and an edge between two vertices mean there is a common student. 

So this is a graph coloring problem where minimum number of time slots is equal to the 

chromatic number of the graph.  

 

2) Mobile Radio Frequency Assignment:  

                       When frequencies are assigned to towers, frequencies assigned to all towers at the 

same location must be different. How to assign frequencies with this constraint?  What is the 

minimum number of frequencies needed?  This problem is also an instance of graph coloring 

problem where every tower represents a vertex and an edge between two towers represents 

that they are in range of each other.  

 

3) Register Allocation: 

                  In compiler optimization, register allocation is the process of assigning a large number 

of target program variables onto a small number of CPU registers. This problem is also a graph 

coloring problem. 

 

4) Sudoku: 

                    Sudoku is also a variation of Graph coloring problem where every cell represents a 

vertex. There is an edge between two vertices if they are in same row or same column or same 

block.  
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5)     Map Coloring: 

                     Geographical maps of countries or states where no two adjacent cities cannot be 

assigned same color. Four colors are sufficient to color any map. 

 

 

6)   Bipartite Graphs:  

                   We can check if a graph is bipartite or not by coloring the graph using two colors. If a 

given graph is 2-colorable, then it is Bipartite, otherwise not. See this for more details. 

 

Explanation; 

 

Algorithm: 

              A bipartite graph is possible if it is possible to assign a color to each vertex such that no 
two neighbour vertices are assigned the same color. Only two colors can be used in this 
process. 

 

 

 

Steps: 

1. Assign a color (say red) to the source vertex. 

2. Assign all the neighbours of the above vertex another color (say blue). 

3. Taking one neighbour at a time, assign all the neighbour's neighbours the color red. 

4. Continue in this manner till all the vertices have been assigned a color. 

5. If at any stage, we find a neighbour which has been assigned the same color as that of the 

current vertex, stop the process. The graph cannot be colored using two colors. Thus the graph 

is not bipartite. 
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Example: 
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CONCLUSION 

 

This project aims to provide a solid background in the basic topics of graph coloring. Graph 

coloring problem is to assign colors to certain elements of a graph subject to certain 

constraints. The nature of coloring problem depends on the number of colors but not on what 

they are. 

                    The study of this topic gives excellent introduction to the subject called “Graph 

Coloring”. 

This project includes two important topics such as vertex coloring and edge coloring and came 

to know about different ways and importance of coloring. 

                    Graph coloring enjoys many practical applications as well as theoretical challenges. 

Besides the applications, different limitations can also be set on the graph or on the away a color 

is assigned or even on the color itself. It has been reached popularity with the general public in 

the form of the popular number puzzle Sudoku and it is also use in the making of time 

management which is an important application of coloring. So graph coloring is still a very 

active field of research.  
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INTRODUCTION 

A power series is a type of series with terms involving a variable. Power series 

are often used by calculators and computers to evaluate trigonometric, 

hyperbolic, exponential and logarithm functions. So any application of these 

kind of functions is a possible application of power series. Many interesting and 

important differential equations can be found in power series. 

 

 

. 
  



2 
 

PRELIMINERY 

 

A.  An infinite series of the form   

                                  ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯                                (1) 

       is called a power series in x. The series 

∑  

∞

𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)2 + ⋯ 

       is a power series in x – x0. 

 

B. The series (1) is said to converge at a point x if the limit 

𝑙𝑖𝑚
𝑚→∞

  ∑  

𝑚

𝑛=0

𝑎𝑛𝑥𝑛 

      exists, and in this case the sum of the series is the value of this limit. 

     Radius of convergence: Series in 𝑥 has a radius of convergence 𝑅, where  

      0 ≤ 𝑅 ≤ ∞, with the property that the series converges if |𝑥| < 𝑅 and           

      diverges if |𝑥| > 𝑅. It should be noted that if 𝑅 = 0 then no 𝑥 satisfies            

      |𝑥| < 𝑅, and if 𝑅 = ∞ then no 𝑥 satisfies |𝑥| > 𝑅 

𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
𝑎𝑛

𝑎𝑛+1
|  , if the limit exists. 

 

C. Suppose that (1) converges for |𝑥| < 𝑅 with 𝑅 > 0, and denote its sum  

     by f(x):         

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

     Then f(x) is automatically continuous and has derivatives of all orders for 

      |𝑥| < 𝑅. 
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D.  Let f(x) be a continuous function that has derivatives of all orders for 

      |x|< R with R > 0. f(x) be represented as power series using Taylor’s      

      formula: 

𝑓(𝑥) = ∑  

𝑛

𝑘=0

𝑓(𝑘)(0)

𝑘!
𝑥𝑘 + 𝑅𝑛(𝑥) 

     where the remainder Rn (x) is given by 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑥̅)

(𝑛 + 1)!
𝑥𝑛+1 

     for some point 𝑥̅ between 0 and x.  

 

E.  A function f(x) with the property that a power series expansion of 

      the form 

  

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 

      is valid in some neighbourhood of the point x0 is said to be analytic at 

      x0. In this case the an are necessarily given by 

𝑎𝑛 =
𝑓(𝑛)(𝑥0)

𝑛!
 

      and is called the Taylor series of f(x) at x0. 

 

Analytic functions: A function f defined on some open subset U of R or C is          

called analytic if it is locally given by a convergent power series. This means 

that every a ∈ U has an open neighbourhood V ⊆ U, such that there exists           

a power series with centre a that converges to f(x) for every x ∈ V. 
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CHAPTER 1 

SERIES SOLUTION OF FIRST ORDER EQUATION 

We have studied to solve linear equations with constants coefficient but with 

variable coefficient only specific cases are discussed. Now we turn to these 

latter cases and try to find a general method to solve this. The idea is to assume 

that the unknown function y can be explained into a power series. Our purpose 

in this section is to explain the procedures by showing how it works in the case 

of first order equation that are easy to solve by elementary methods.  

 

Example 1: we consider the equation               

𝑦ʹ = 𝑦 

Consider the above equation as  (1). Assume that y has a power series solution 

of the form 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

Which converges for |x| < R, R > 0 

That is we assume that  𝑦ʹ = 𝑦 has a solution that is analytic at origin. We have 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

                           = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ ⋯ 

then 

𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 

                                     = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ … …. 

            ∴ (1) ⇒ 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 ⋯ 

                       = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

⇒ 𝑎1 = 𝑎0  

 2𝑎2 = 𝑎1 ⇒                                𝑎2 =
𝑎1

2
=

𝑎0

2
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3𝑎3 = 𝑎2 ⇒                               𝑎3 =
𝑎2

3
=

𝑎0

2 ∙ 3
=

𝑎0

3!
 

4𝑎4 = 𝑎3 ⇒                               𝑎4 =
𝑎3

4
=

𝑎0

2 ⋅ 3 ⋅ 4
=

𝑎0

4!
 

∴  we get                                      𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

                                                            = 𝑎0 + 𝑎0𝑥 +
𝑎0

2
𝑥2 +

𝑎0

3!
𝑥3 +

𝑎0

4!
𝑥4 + ⋯ 

                                                            = 𝑎0 (1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ ) 

                                                        𝑦 = 𝑎0𝑒𝑥 

To find the actual function we have 𝑦ʹ = 𝑦 

                                            i.e.,   
𝑑𝑦

𝑑𝑥
= 𝑦  ⇒       

𝑑𝑦

𝑦
= 𝑑𝑥 

integrating  

                                                 log 𝑦 = 𝑥 + 𝑐 

                                          i.e.,        𝑦 = 𝑒𝑥+𝑐 = 𝑒𝑥 ⋅ 𝑒𝑐 

                                                        𝑦 = 𝑎0𝑒𝑥 , where a0 = ec , a constant. 

 

 Example 2: solve 𝑦′ = 2𝑥𝑦. Also find its actual solution. 

 Solution:                                         𝑦′ = 2𝑥𝑦                        (1) 

 Assume that y has a power series of the form 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

Which converges for  |𝑥| < 𝑅, 𝑅 > 0 

We have                                           𝑦 = ∑  

∞

𝑛=0

a𝑛 𝑥𝑛 

                                                        = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

   𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 
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                             = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ 

Then (1) ⇒ 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ =  2𝑥(𝑎0 + 𝑎1𝑥 +𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ ) 

                                                      = 2𝑥𝑎0 + 2𝑥𝑎1𝑥 + 2𝑥𝑎2𝑥2 + 2𝑥𝑎3𝑥3 + ⋯ 

                                                      = 2𝑥𝑎0 + 2𝑎1𝑥2 + 2𝑎2𝑥3 + 2𝑎3𝑥4 + ⋯ … .. 

⇒ 𝑎1 = 0         2𝑎2 = 2𝑎0 ⇒ 𝑎2 =
2𝑎0

𝑧
= 𝑎0 

                        3. 𝑎3 = 2𝑎1 ⇒ 𝑎3 =
2𝑎1

3
= 0 

                         4𝑎4 = 2𝑎2 ⇒ 𝑎4 =
2𝑎2

42
=

𝑎0

2
 

                         5𝑎5 = 2𝑎3 = 0 ⇒ 𝑎5 = 0 

                         6𝑎6 = 2𝑎4 ⇒ 𝑎6 =
2𝑎4

6
=

𝑎4

3
=

𝑎0

2⋅3
=

𝑎0

3!
 

We get, 

            

𝑦  = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯

 = 𝑎0 + 0 + 𝑎0𝑥2 + 0𝑥3 +
𝑎0

2
𝑥4 + ⋯

 = 𝑎0 + 𝑎0𝑥2 +
𝑎0

2
𝑥4 + ⋯

 = 𝑎0 (1 + 𝑥2 +
𝑥4

2!
+

𝑥6

3!
+ ⋯ )

 

                                  𝑦 = 𝑎0𝑒𝑥2
  

To find an actual solution 

                

⇒

                                    𝑦′ = 2𝑥𝑦
𝑑𝑦

𝑑𝑥
= 2𝑥𝑦

                                   
𝑑𝑦

𝑦
= 2𝑥 ⋅ 𝑑𝑥

                              log 𝑦 = 𝑥2 + 𝑐

𝑦 = 𝑒𝑥2
+ 𝑐

⇒ 𝑦 = 𝑎0𝑒𝑥2
, where 𝑎0 = 𝑒𝑐
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Example 3: Consider 𝑦 = (1 + 𝑥)𝑝 where p is an arbitrary constant. Construct a 

differential equation from this and then find the solution using power series 

method. 

 Solution 

             First, we construct a differential equation 

                         i.e. 𝑦 = (1 + 𝑥)𝑝 

                              𝑦′ = 𝑝(1 + 𝑥)𝑝−1 =
𝑝(1+𝑥)𝑝

1+𝑥
=

𝑝𝑦

1+𝑥
 

                            ∴ (1 + 𝑥)𝑦′ = 𝑝𝑦,   𝑦(0) = 𝑟 

Assume that y has a power series solution of the form, 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

                                  = 𝑎0 + 𝑎1𝑥 + 𝑎̇2𝑥2 + ⋯ … … 

Which converges for |𝑥| < 𝑅̇,    𝑅 > 0 

                                𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ … … .. 

    𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 

                              = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ 

                             Then (1 + 𝑥)𝑦′ = 𝑝𝑦  

⇒ (1 + 𝑥)𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ = 𝑝(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )  

⇒ (𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ ) + (𝑎1𝑥 + 2𝑎2𝑥2 + 3𝑎3𝑥3 + ⋯ )  

                                                           = 𝑎0𝑝 + 𝑎1𝑝𝑥 + 𝑎2𝑝𝑥2 + ⋯ 

Equating the coefficients of 𝑥, 𝑥2, … 

                            𝑎1 = 𝑎0𝑝  i.e.  𝑎1 = 𝑝, (since 𝑎0 = 1) 

       ⇒ 2𝑎2 = 𝑎1(p − 1) 

               𝑎2 =
𝑎1(p − 1)

2
=

𝑎0𝑃(𝑝 − 1)

2
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                3𝑎3 + 2𝑎2 = 𝑎2𝑝
𝑠𝑎3 = 𝑎2𝑝 − 2𝑎2

                          = 𝑎2(𝑝 − 2)

𝑎3 =
𝑎2(𝑝 − 2)

3
=

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)

2 ⋅ 3

 

4𝑎4 + 3𝑎3 = 𝑎3𝑝
4𝑎4 = 𝑎3𝑝 − 3𝑎3

= 𝑎3(𝑝 − 3)

𝑎4 =
𝑎3(𝑝 − 3)

4
=

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

2 ⋅ 3 ⋅ 4

 

∴ we get, 

           𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 

= 𝑎0 + 𝑎0𝑝𝑥 +
𝑎0𝑝(𝑝 − 1)

2
𝑥2 +

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)

2 ⋅ 3
𝑥3 + ⋯ … 

              = 1 + 𝑝𝑥 +
𝑝(𝑝 − 1)

2!
𝑥2 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
𝑥3 + 

                 
𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

4!
𝑥4 + ⋯ +

𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − (𝑛 − 1))

𝑛!
𝑥𝑛 

Since the initial problem y(0) = 1 has one solution the series converges for |x|<1 

So this is a power solution,  

(1 + 𝑥)𝑝 = 1 + 𝑝𝑥 +
𝑝(𝑝 − 1)

2!
𝑥2 + ⋯ +

𝑝(𝑝 − 1) ⋯ (𝑝 − (𝑛 − 1))

𝑛!
𝑥𝑛 

Which is binomial series. 

 

Example 4: Solve the equation  𝑦′ = 𝑥 − 𝑦, 𝑦 (0) = 0   

  Solution: Assume that y has a power series solution of the form 

𝑦 = ∑  

∞

𝑛=0

an 𝑥𝑛 

which converges for |𝑥| < 𝑅, 𝑅 > 0 

                           
 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯

𝑦′ = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯
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 Now 𝑦′ = 𝑥 − 𝑦

(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ ) = 𝑥 − (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )
 

Equating the coefficients of 𝑥, 𝑥2,  

𝑎1     = −𝑎0 = 0,      Since     𝑦(0) = 0
2𝑎2     = 1 − 𝑎1        
    = 1 − 0    

 

                                      

⇒ 𝑎2 =
1

2
   3𝑎3 = −𝑎2

      𝑎3 =
−𝑎2

3
= −

1

2 ⋅ 3

 

                                          4𝑎4 = −𝑎3

⇒ 𝑎4 =
1

2 ⋅ 3 ⋅ 4

 

                                           ∴ 𝑦 = 0 + 0 +
𝑥2

2!
−

𝑥3

3!
+

𝑥4

4!
− ⋯ … … 

                                                   
= (1 − 𝑥 +

𝑥2

2!
−

𝑥3

3!
+ ⋯ ) + 𝑥 − 1

= 𝑒−𝑥 + 𝑥 − 1

 

By direct method  

𝑦′ = 𝑥 − 𝑦
𝑑𝑦

𝑑𝑥
= 𝑥 − 𝑦 ⇒

𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑥

                                       ( 
𝑑𝑦

𝑑𝑥
+ 𝑝𝑦 = 𝑄 𝑓𝑜𝑟𝑚) 

here 𝑃(𝑥) = 1,  integrating factor 

= 𝑒∫ 𝑝(𝑥)⋅𝑑𝑥

= 𝑒𝑥

 

                     

∴ 𝑦𝑒𝑥 = ∫ 𝑥𝑒𝑥 ⋅ 𝑑𝑥

𝑦𝑒𝑥 = 𝑥 ⋅ 𝑒𝑥 − ∫ 𝑒𝑥 ⋅ 𝑑𝑥
= 𝑥𝑒𝑥 − 𝑒𝑥

𝑦𝑒𝑥 = 𝑒𝑥(𝑥 − 1) + 𝑐

 

𝑦 =
𝑒𝑥(𝑥 − 1) + 𝑐

𝑑𝑥
= 𝑥 − 1 +

𝑐

𝑒𝑥
= 𝑐𝑒−𝑥 + (𝑥 − 1)

  ∴ 𝑦 = (𝑥 − 1) + 𝑐𝑒−𝑥
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CHAPTER 2 

SECOND ORDER LINEAR EQUATION, ORDINARY POINTS 

 

Consider the general homogeneous second order linear equation, 

                                    𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0                    (1) 

As we know, it is occasionally possible to solve such an equation in terms of 

familiar elementary functions. This is true, for instance, when P(x) and Q(x) 

are constants, and in a few other cases as well. For the most part, however, 

the equations of this type having the greatest significance in both pure and 

applied mathematics are beyond the reach of elementary methods, and can 

only be solved by means of power series. 

P(x) and Q(x) are called coefficients of the equation. The behaviour of its 

solutions near a point x0 depends on the behaviour of its coefficient functions 

P(x) and Q(x) near this point. we confine ourselves to the case in which P(x) and 

Q(x) are well behaved in the sense of being analytic at x0, which means that 

each has a power series expansion valid in some neighbourhood of this point. In 

this case x0 is called an ordinary point of equation (1). Any point that is not an 

ordinary point of (1) is called a singular point. 

Consider the equation, 

                                                          𝑦′′ + 𝑦 = 0                                     (2) 

the coefficient functions are P(x) = 0 and Q(x) = 1, These functions are analytic 

at all points, so we seek a solution of the form, 

                                 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 + ⋯                    (3)       

Differentiating (3) we get, 

              𝑦′ = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ + (𝑛 + 1)𝑎𝑛+1𝑥𝑛 + ⋯          (4)   
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And 

 𝑦′′ = 2𝑎2 + 2 ⋅ 3𝑎3𝑥 + 3 ⋅ 4𝑎4𝑥2 + ⋯ + (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 + ⋯  (5) 

If we substitute (5) and (3) into (2) and add the two series term by term, we get 

𝑦′′ + 𝑦 =
(2𝑎2 + 𝑎0) + (2 ⋅ 3𝑎3 + 𝑎1)𝑥 + (3 ⋅ 4𝑎4 + 𝑎2)𝑥2 +

  (4 ⋅ 5𝑎5 + 𝑎3)𝑥3  + ⋯ + [(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑎𝑛]𝑥𝑛 + ⋯
= 0 

and equating to zero the coefficients of successive powers of x gives 

2𝑎2 + 𝑎0 = 0, 2 ⋅ 3𝑎3 + 𝑎1 = 0, 3 ⋅ 4𝑎4 + 𝑎2 = 0 

4 ⋅ 5𝑎5 + 𝑎3 = 0, … … , (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑎𝑛 = 0, … 

By means of these equations we can express an in terms of a0 or a0, according 

as n is even or odd: 

𝑎2 = −
𝑎0

2
, 𝑎3 = −

𝑎1

2 ⋅ 3
, 𝑎4 = −

𝑎2

3 ⋅ 4
=

𝑎0

2 ⋅ 3 ⋅ 4
 

𝑎5 = −
𝑎3

4 ⋅ 5
=

𝑎1

2 ⋅ 3 ⋅ 4 ⋅ 5
, ⋯ 

With these coefficients, (3) becomes 

                    𝑦 = 𝑎0 + 𝑎1𝑥 −
𝑎0

2
𝑥2 −

𝑎1

2 ⋅ 3
𝑥3 +

𝑎0

2 ⋅ 3 ⋅ 4
𝑥4 +

𝑎1

2 ⋅ 3 ⋅ 4 ⋅ 5
𝑥5 − ⋯ 

                        = 𝑎0 (1 −
𝑥2

2!
+

𝑥4

4!
− ⋯ ) + 𝑎1 (𝑥 −

𝑥3

3!
+

𝑥5

5!
− ⋯ )            (6) 

  𝑖. 𝑒,            𝑦 = 𝑎0cos 𝑥 + 𝑎1sin 𝑥 

Since each of the series in the parenthesis converges for all x. This implies the 

series (2) for all x. 

 

Solve the legenders equation, 

(1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0 

Solution 

Consider   (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0  as equation (1) 

Assume that y has a power series solution of the form 

𝑦 = ∑𝑎𝑛𝑥𝑛 
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Which converges |𝑥| < 𝑅, 𝑅 > 0 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

 

       

2𝑥𝑦′ = ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛

𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

𝑥2𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛

 

put 𝑛 = 𝑛 + 2    (Since 𝑦′′ is not 𝑥𝑛 form ) 

⇒ ∑  

∞

𝑛=0

(𝑛 + 2)(𝑛 + 2 − 1)𝑎𝑛+2𝑥𝑛+2−2

∴ 𝑦′′ = ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛

 

Now (1) ⇒              𝑦′′ − 𝑥2𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0 

⇒ ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 − ∑𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 − ∑2𝑛𝑎𝑛𝑥𝑛 + ∑𝑝(𝑝 + 1)𝑎𝑛𝑥𝑛 = 0  

⇒ ∑  

∞

𝑛=0

[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 𝑛(𝑛 − 1)𝑎𝑛 − 2𝑛𝑎𝑛 + 𝑝(𝑝 + 1)𝑎𝑛)𝑥𝑛] = 0  

                                                                                         for n = 0,1,2,3……. 

⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 𝑛(𝑛 − 1)𝑎𝑛 − 2𝑛𝑎𝑛 + 𝑝(𝑝 + 1)𝑎𝑛 = 0 

⇒ 𝑎𝑛+2 =
[𝑛(𝑛 − 1) + 2𝑛 − 𝑝(𝑝 + 1)]

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 

=
(𝑛2 − 𝑛 + 2𝑛 − 𝑝2 − 𝑝)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)

=
(𝑛2 + 𝑛 − 𝑝2 − 𝑝)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)
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∴ 𝑎𝑛+2 =
−(𝑝 − 𝑛)(𝑝 + 𝑛 + 1)

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 , 𝑛 = 0,1,2 …

      
This is an Recursion formula 

 

 

 put 𝑛 = 0, 𝑎2 =
−𝑝(𝑝 + 1)

1 ⋅ 2
𝑎0

𝑛 = 1, 𝑎3 =
−(𝑝 − 1)(𝑝 + 2)

2 ⋅ 3
⋅ 𝑎1

        𝑛 = 2,      𝑎4 =
−(𝑝 − 2)(𝑝 + 3)

3𝑖4
𝑎2

 =
𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
𝑎0

 

         

𝑛 = 3, 𝑎5 =
−(𝑝 − 3)[𝑝 + 4)

4 ⋅ 5
𝑎3

=
(𝑝 − 1)(𝑝 − 3)(𝑝 + 2)(𝑝 + 4)

5!
𝑎1

𝑛 = 4, 𝑎6 =
−(𝑝 − 4)(𝑝 + 5)

5 ⋅ 6
𝑎4

=
−𝑝(𝑝 − 2)(𝑝 − 4)(𝑝 + 1)(𝑝 + 3)(𝑝 + 5)

6!
𝑎0

 

        
𝑛 = 5,          𝑎7 = −

(𝑝 − 5)(𝑝 + 6)

6 ⋅ 7
𝑎5

= −
(𝑝 − 1)(𝑝 − 3)(𝑝 − 5)(𝑝 + 2)(𝑝 + 4)(𝑝 + 6)

7!
𝑎1

 

 

               

𝑦 = 𝑎0 [1 −
𝑝(𝑝 + 1)

2!
𝑥2 +

𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
𝑥4

−
𝑝(𝑝 − 2)(𝑝 − 4)(𝑝 + 1)(𝑝 + 3)(𝑝 + 5)

6!
𝑥6 + ⋯ ]

+𝑎1 [𝑥 −
(𝑝 − 1)(𝑝 + 2)

3!
𝑥3 +

(𝑝 − 1)(𝑝 − 3)(𝑝 + 2)(𝑝 + 4)

5!
𝑥5

−
(𝑝 − 1)(𝑝 − 3)(𝑝 − 5)(𝑝 + 2)(𝑝 + 4)(𝑝 + 6)

7!
𝑥7 + ⋯ ]
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Find the general solution of (1 + 𝑥2)𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0 in terms of power 

series in 𝑥. Can you express this solution by means of elementary functions? 

Solution 

Consider the equation   (1 + 𝑥2)𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0  as equation (1) 

Assume that y has a power series solution of the form 

𝑦 = ∑𝑎𝑛𝑥𝑛 

Which converges |𝑥| < 𝑅, 𝑅 > 0 

         𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

       𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

 

2𝑥𝑦′ = ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛

                   𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

 

                                    (1 + 𝑥2)𝑦′′ = 𝑦′′ + 𝑥2𝑦′′ 

                                                     𝑥2𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 

        Now 𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 

 

 put 𝑛 = 𝑛 + 2

⇒                                                           ∑  

∞

𝑛=0

(𝑛 + 2)(𝑛 + 2 − 1)𝑎𝑛 + 2𝑥𝑛+2=2

                                        = ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛

 



15 
 

(1) ⇒ ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 + ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛

+ ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛 − ∑  

∞

𝑛=0

2𝑎𝑛𝑥𝑛 = 0

 

⇒ ∑[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 + 2𝑛𝑎𝑛 − 2𝑎𝑛)𝑥𝑛] = 0 

            ⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 + 2𝑛𝑎𝑛 − 2𝑎𝑛 = 0 

 

𝑎𝑛+2 =
[−𝑛(𝑛 − 1) − 2𝑛 + 2]

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛

=
(−𝑛2 + 𝑛 − 2𝑛 + 2)

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛

 

 

                 

 put 𝑛 = 0, 𝑎2 =
2

1 ⋅ 2
𝑎0 =

2𝑎0

2!
= 𝑎0

𝑛 = 1, 𝑎3 =
(1 − 1 − 2 + 2)

2 ⋅ 3
𝑎1 = 0

𝑛 = 2, 𝑎4 =
2 − 4 − 4 + 2

3 ⋅ 4
𝑎2     =

−4

3 ⋅ 4
𝑎0 =

−𝑎0

3

 

                         
𝑛 = 3, 𝑎5 =

3 − 9 − 16 + 2

4.5
𝑎3   = 0

𝑛 = 4, 𝑎6 =
4 − 16 − 8 + 2

5.6
𝑎4   =

−3

5
𝑎4   =

3𝑎0

3.5
=

𝑎0

5

 

 

                                            

∴ 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯

= 𝑎0 + 𝑎1𝑥 + 𝑎0𝑥2 −
𝑎0

3
𝑥4 +

𝑎0

5
𝑥6 … .

= 𝑎0 [1 + 𝑥2 −
𝑥4

3
+

𝑥6

5
− ⋯ ] + 𝑎1𝑥

= 𝑎0 [1 + 𝑥 (𝑥 −
𝑥3

3
+

𝑥5

5
⋯ )] + 𝑎1𝑥

= 𝑎0(1 + 𝑥tan−1 𝑥) + 𝑎1𝑥
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Consider the equation   𝑦′′ + 𝑥𝑦′ + 𝑦 = 0 

(a) Find its general solution     𝑦 = ∑𝑎𝑛𝑥𝑛    in the form                                                        

𝑦 = 𝑎0𝑦1(𝑥) + 𝑎1𝑦2(𝑥) where 𝑦1(𝑥) and 𝑦2(𝑥) are power series 

(b) use the ratio test to verify that the two series 𝑦1(𝑥) and 𝑦2(𝑥) converges        

.      for all x. 

Solution: 

 Given              𝑦′′ + 𝑥𝑦′ + 𝑦 = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1) 

Assume that y has a power series solution the form ∑a𝑛𝑥𝑛 which converges 

for |𝑥|     𝑅 > 0 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ = ∑  

∞

𝑛=1

𝑛 ⋅ 𝑎𝑛𝑥𝑛−1

𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

= ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛

 

                               𝑥𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛 

(1) ⇒ ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)a𝑛+2𝑥𝑛 + ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛 + ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 0
 

                   ⇒ ∑[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛𝑎𝑛 + 𝑎𝑛)𝑥𝑛] = 0 

                   ⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛𝑎𝑛 + 𝑎𝑛 = 0 

                   ⇒ 𝑎𝑛+2 =
(−𝑛 − 1)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)
=

−𝑎𝑛

𝑛 + 2
  

put         𝑛 = 0, 𝑎2 = −
𝑎0

2

                               𝑛 = 1, 𝑎3 =
−2𝑎1

2 ⋅ 3
=

−𝑎1

3
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𝑛 = 2,     𝑎4 =
−3𝑎2

3 ⋅ 4
=

−𝑎2

4
=

𝑎0

8

𝑛 = 3,     𝑎5 =
−4𝑎3

4 ⋅ 5
=

𝑎1

15

𝑛 = 4,     𝑎6 =
−5𝑎4

5 ⋅ 6
=

−𝑎0

48

 

∴  we get              𝑦 = 𝑎0 + 𝑎1𝑥 + −
𝑎0

2
𝑥2 −

𝑎1

3
𝑥3 +

𝑎0

8
𝑥4 +

𝑎1

15
𝑥5 −

𝑎0

48
𝑥6 + ⋯

  

                                   = 𝑎0 [1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥6

2 ⋅ 4 ⋅ 6
+ ⋯ ] + 𝑎1 [𝑥 −

𝑥3

3
+

𝑥5

3.5
+ ⋯ ]

 

𝑤ℎ𝑒𝑟𝑒          𝑦1(𝑥) = 1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥̇2

2 ⋅ 4 ⋅ 6
+ 

                      𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

𝑥5

3 ⋅ 5
+ ⋯ 

    

(b)           𝑦1(𝑥) = 1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥6

2 ⋅ 4 ⋅ 6
+ ⋯ 

 

                         𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
𝑎𝑛

𝑎𝑛+1
| 

                             = 𝑙𝑖𝑚
𝑛→∞

  |
(−1)𝑛

2 ⋅ 4 ⋅ (2𝑛)
/

(−1)𝑛+1

2 ⋅ 4 ⋅⋅ (2𝑛 + 2)
| 

                             = 𝑙𝑖𝑚
𝑛→∞

  |
2(𝑛 + 1)

−1
| 

                             = 𝑙𝑖𝑚
𝑛→∞

 | − 2𝑛(1 +
1

𝑛
)| = ∞ 

                            
∴ 𝑦1(𝑥) converges for all 𝑥

 

                𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

𝑥5

3 ⋅ 5
− ⋯ 



18 
 

                    𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
(−1)𝑛

3 ⋅ 5 ⋯ (2𝑛 + 1)

(−1)𝑛+1

3 ⋅ 5 ⋅ ⋯ (2𝑛 + 3)
⁄ | 

                        = 𝑙𝑖𝑚
𝑛→∞

  |
(−1) ⋅ 3 ⋅ 5 ⋯ (2𝑛 + 1)(2𝑛 + 3)

3 ⋅ 5 ⋯ ⋅ (2𝑛 + 1)
| 

                        = 𝑙𝑖𝑚
𝑛→∞

 |(−1)𝑛(2 + 3/𝑛)| = ∞ 

                       
∴ 𝑦2(𝑥) converges for all 𝑥

 

 

 

REGULAR SINGULAR POINTS 

A singular point 𝑥0 of equation 

𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0 

is said to be regular if the functions (𝑥 − 𝑥0)𝑃(𝑥) and (𝑥 − 𝑥0)2𝑄(𝑥) are 

analytic, and irregular otherwise. Roughly speaking, this means that the 

singularity in 𝑃(𝑥) cannot be worse than 1/(𝑥 − 𝑥0), and that in 𝑄(𝑥) cannot 

be worse than 1/(𝑥 − 𝑥0)2.  

If we consider Legendre’s equation in the form 

𝑦′′ −
2𝑥

1 − 𝑥2
𝑦′ +

𝑝(𝑝 + 1)

1 − 𝑥2
𝑦 = 0 

it is clear that x = 1 and x = −1 are singular points. The first is regular because 

(𝑥 − 1)𝑃(𝑥) =
2𝑥

𝑥 + 1
 and (𝑥 − 1)2𝑄(𝑥) = −

(𝑥 − 1)𝑝(𝑝 + 1)

𝑥 + 1
 

are analytic at x = 1, and the second is also regular for similar reasons. 

Example: Bessel’s equation of order p, where p is a nonnegative constant: 

𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 𝑝2)𝑦 = 0 

If this is written in the form 

𝑦′′ +
1

𝑥
𝑦′ +

𝑥2 − 𝑝2

𝑥2
𝑦 = 0, 

it is apparent that the origin is a regular singular point because𝑥𝑃(𝑥) = 1 and 

𝑥2𝑄(𝑥) = 𝑥2 − 𝑝2 are analytic at x = 0.  
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CONCLUSION 

The purpose of this project gives a simple account of series solution of first 

order equation, second order linear equation, ordinary points. The study of these 

topics given excellent introduction to the subject called ‘POWER SERIES’ 

we used application of  power series extensively throughout this project. We 

take it for granted that most readers are reasonably well acquainted with these 

series from an earlier course in calculus. Nevertheless, for the benefit of those 

whose familiarity with this topic may have faded slightly, we presented a brief 

review of the main facts of power series. 
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INTRODUCTION

This chapter gives an introduction to the theory of normed linear spaces. A skeptical reader may
wonder why this topic in pure mathematics is useful in applied mathematics. The reason is quite
simple: Many problems of applied mathematics can be formulated as a search for a certain
function, such as the function that solves a given differential equation. Usually the function
sought must belong to a definite family of acceptable functions that share some useful properties.
For example, perhaps it must possess two continuous derivatives. The families that arise
naturally in formulating problems are often linear spaces. This means that any linear combination
of functions in the family will be another member of the family. It is common, in addition, that
there is an appropriate means of measuring the “distance” between two functions in the family.
This concept comes into play when the exact solution to a problem is inaccessible, while
approximate solutions can be computed. We often measure how far apart the exact and
approximate solutions are by using a norm. In this process we are led to a normed linear space,
presumably one appropriate to the problem at hand. Some normed linear spaces occur over and
over again in applied mathematics, and these, at least, should be familiar to the practitioner.
Examples are the space of continuous functions on a given domain and the space of functions
whose squares have a finite integral on a given domain.
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PRELIMINARIES

1) LINEAR SPACES

We introduce an algebraic structure on a set and study functions on X which are well behaved𝑋
with respect to this structure. From now onwards , K will denote either R , the set of all real
numbers or C, the set of all complex numbers. For k C , Re k and Im k will denote the  real and∈
imaginary part of k.

A linear space(or a vector space) over K is a non-empty set along with a function𝑋
, called addition and a function : K called scalar multiplication, such+  :  𝑋 × 𝑋 → 𝑋 · × 𝑋 → 𝑋

that for all and K , we have𝑥 ,  𝑦 ,  𝑧 ∈ 𝑋  𝑘 ,  𝑙 ∈

𝑥 + 𝑦 = 𝑦 + 𝑥

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧

∃0∈𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + 0 = 𝑥,

∃ − 𝑥 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + (− 𝑥) = 0 ,

,𝑘 · (𝑥 + 𝑦) = 𝑘 · 𝑥 + 𝑘 · 𝑦

(𝑘 + 𝑙)⋅𝑥 = 𝑘 · 𝑥 + 𝑙 · 𝑥,

(𝑘𝑙)⋅𝑥 = 𝑘 · (𝑙 · 𝑥),

1⋅𝑥 = 𝑥.

We shall write in place of . We shall also adopt the following notations. For𝑘𝑥 𝑘 · 𝑥
K and subsets of ,𝑥, 𝑦 ∈ 𝑋, 𝑘 ∈ 𝐸, 𝐹 𝑋

𝑥 + 𝐹 = {𝑥 + 𝑦: 𝑦 ∈ 𝐹},

`𝐸 + 𝐹 = {𝑥 + 𝑦: 𝑥 ∈ 𝐸, 𝑦 ∈ 𝐹},

𝑘𝐸 = {𝑘𝑥: 𝑥 ∈ 𝐸}.

2) BASIS

A nonempty subset of is said to be a subspace of if whenever and𝐸 𝑋 𝑋 𝑘𝑥 + 𝑙𝑦 ∈ 𝐸 𝑥, 𝑦 ∈ 𝐸
K . If , then the smallest subspace of containing is𝑘, 𝑙 ∈ ∅≠𝐸 ⊂ 𝑋 𝑋 𝐸
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𝑠𝑝𝑎𝑛⁡𝐸 = 𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
: 𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 ,  𝑘

1
, …, 𝑘

𝑛
∈ 𝐾{ }

It is called the span of . If span , we say that spans . A subset of is said to be𝐸 𝐸 = 𝑋 𝐸 𝑋 𝐸 𝑋
linearly independent if for all and K , the equation𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

implies that It is called linearly dependent if it is not𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

1
= ⋯ = 𝑘

𝑛
= 0.

linearly independent, that is, if there exist and K such that𝑥
1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

, where at least one is nonzero.𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

𝑗

A subset E of X is called a Hamel basis or simply basis for X if span of E = X and E is
linearly independent .

3) DIMENSION

If a linear space has a basis consisting of a finite number of elements , then X is called finite𝑋
dimensional and the number of elements in a basis for is called the dimension of , denoted as𝑋 𝑋
dimX . Every basis for a finite dimensional linear space has the same (finite) number of elements
and hence the dimension is well-defined. The space is said to have zero dimension. Note that{0}
it has no basis !

If a linear space contains an infinite linearly independent subset, then it is said to be infinite
dimensional.

4)METRIC SPACE

We introduce a distance structure on a set and study functions on which are well-behaved𝑋 𝑋
with respect to this structure.

A metric on a nonempty set is a function R𝑑 𝑋 𝑑: 𝑋 × 𝑋 →
such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

d(x, y) 0 and d(x , y) = 0 iff x=y≥

d(y , x) = d(x , y)

d(x , y) d(x , z) + d(z , y) .≤

The last condition is known as the triangle inequality. A metric space is a nonempty set along𝑋
with a metric on it.
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5)CONTINUOUS FUNCTIONS

Roughly speaking, a function from a metric space to a metric space is continuous if it sends
‘nearby’ points to ‘nearby’ points. If and are metric spaces with metrics and respectively,𝑋 𝑌 𝑑 𝑒
then a function is said to be continuous at if for every 0 , there is some𝐹: 𝑋 → 𝑌 𝑥

0
∈ 𝑋 ϵ⟩

(possibly depending on and ) such that for all satisfyingδ > 0 ϵ 𝑥
0

𝑒 𝐹(𝑥), 𝐹 𝑥
0( )( ) < ϵ 𝑥 ∈ 𝑋

. Further, is said to be continuous on if it is continuous at every point of It is𝑑 𝑥, 𝑥
0( ) < δ 𝐹 𝑋 𝑋.

easy to see that is continuous on if and only if the set F -1(E) is open in X whenever the set E𝐹 𝑋
is open inY. Also , this happens iff F(xn) F(x) in Y whenever xn x in X.→ →

6) UNIFORM CONTINUITY

We note that a continuous function is, in fact, uniformly𝐹: 𝑇 → 𝑆
continuous, that is, for every , there exists someϵ > 0 δ > 0

such that whenever . This can be seen as follows. Let . By𝑒 𝐹(𝑡), 𝐹(𝑢( )) < ϵ 𝑑 𝑡, 𝑢( ) < δ 𝑡 ∈ 𝑇

the continuity of at , there is some , such that whenever𝐹 𝑡 ∈ 𝑇 δ
𝑡

𝑒 𝐹(𝑡), 𝐹 𝑢( )( ) < ε
2

.𝑑 𝑡, 𝑢( ) < δ
𝑡

7) FIELD

A ring is a set R together with two binary operations + and ( which we call addition and·
multiplication ) such that the following axioms are satisfied .

➢ R is an abelian group with respect to addition
➢ Multiplication is associative
➢ the left distributive law a(b + c) = (a b) + (a c) and the right distributive∀𝑎 , 𝑏, 𝑐 ∈ 𝑅 · ·

law (a + b)c = (a c) + (b c) , hold .· ·

A field is a commutative division ring

9



CHAPTER 1

NORMED LINEAR SPACE

Let X be a linear space over K .  A norm on X is the function || || from to R such that𝑋 ∀
x,y X and k K ,∈ ∈

and  || || = 0  if and only if x = 0  ,||𝑥||≥0 𝑥

||x + y|| ||x|| + ||y|| ,≤

||kx|| =|k| ||x|| .

A norm is the formalization and generalization to real vector spaces of the intuitive
notion of “ length” in the real world .

A normed space is a linear space with norm on it .

For x and y in X , let
d(x,y) = ||x - y||

Then d is a metric on X so that (X,d) is a metric space , thus every normed space is a metric
space

➢ Every normed linear space is a metric space . But converse may not be true .

Example :

d(x,y) = , x , y X
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦| ∀ ∈

||x - y|| =⇒
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦|

||z||  = , z = x - y X⇒  
|𝑧|

1 + |𝑧| ∈
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|| z||  =α
|α𝑧|

1 +|α𝑧|

=
|α| |𝑧|

1 + |α| |𝑧|

= | |α
|𝑧|

1 + |α| |𝑧|( )
| | ||z|| .≠ α

➢ Result

Let X be a normed linear space . Then ,

| ||x|| - ||y|| | ||x - y|| , x , y X≤ ∀ ∈

Proof :

||x|| = || ( x - y ) + y|| ||x - y|| + ||y||≤

||x|| - ||y|| ||x - y|| (1)⇒ ≤ →

x y↔

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y|| (2)⇒ ≤  →

From (1) and (2)

|||x|| - ||y||| ||x - y||≤  

➢ Norm is a continuous function

Let xn x , as n→ → ∞
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xn - x 0 as n ∞⇒ → →

||xn - x|| 0 as n ∞⇒ → →

| ||xn|| - ||x|| | ||xn - x|| 0 as n ∞≤ → →

||xn|| - ||x|| 0 , as n ∞⇒ → →

||x|| is continuous⇒

➢ Norm is a uniformly continuous function

We have , || || :X R . Let x,y X and > 0→ ∈  ε

Then ||x|| = ||x - y + y ||

||x - y|| + ||y||                               ≤

||x|| - ||y|| ||x - y|| )        ⇒ ≤ → (1

Interchanging x and y ,

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y||⇒ ≤

||x|| - ||y|| - ||x - y|| 2)⇒  ≥ → (

Combining (1) and (2)

- ||x - y|| ||x|| - ||y|| ||x - y||≤ ≤

That is ,

| ||x ||- ||y|| | ||x - y||≤

Take , then whenever ||x - y|| < , | ||x|| -|| y|| |<δ = ε δ  ε
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Therefore || || is a uniformly continuous function .

➢ Continuity of addition and scalar multiplication

To show that + : X X X and : K X X are continuous functions.× → · × →

Let (x,y) X X . To show that + is continuous at (x ,y) , that is ,  to show∈  ×
that for each (x,y) X X if xn x and yn y in X , then∈ × → →

+(xn , yn) +(x , y) ;→

That is ,
xn + yn x + y .→

Consider
||( xn + yn) - (x + y )|| = ||xn - x + yn - y||

||xn - x|| + ||yn - y||≤

Given xn x and yn y , for each , N1→ → ϵ > 0 ∃ ∋

||xn - x|| < n N1 ,   and N2
ε
2 ∀ ≥ ∃ ∋

||yn - y|| < n N2
ε
2 ∀ ≥

\

Take N = max { N1, N2}

Then ||xn - x|| < and ||yn - y|| < n Nε
2

ε
2 ∀ ≥

Therefore ||(xn + yn) - (x + y)|| + = n N≤ ε
2

ε
2 ε ∀ ≥

That is , xn + yn x + y→

Now to show that : K X X is continuous· × →

Let (k , x) K X∈ ×
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To show that if kn k and xn x , then knxn kx→ → →

Since kn k   , > 0 N1 |kn - k| < n N1→ ∀ ε ∃ ∋  ε
2

∀ ≥

Since xn x   , > 0 N2 ||xn - x|| < n N2→ ∀ ε ∃ ∋  
ε
2 ∀ ≥

Consider ||knxn - kx|| = ||knxn - kx + xnk - xnk ||

= ||xn (kn - k) + k(xn - x)||

||xn(kn - k)|| + ||k(xn - x)||≤

=  ||xn|| |kn- k| +  |k| ||xn - x||

||xn|| + |k|≤ ε
2

ε
2

∴   knxn kx→

➢ Examples of normed space

1)   Spaces Kn (K = R or C)

For n = 1 ,  the absolute value of function | | is a norm on K , since k K∀ ∈

We have ,

||k|| = ||k || = |k| ||1|| , by definition .· 1

But ||1|| is a positive  scalar .

∴ ||k|| is a positive scalar multiple of the absolute value function .

∴  any norm on K is a positive scalar multiple of the absolute value
function

For n > 1 , let p be a real number≥ 1
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Kn = { ( x(1) , x(2) , . . . , x(n) ) : x(i) K , i = 1 , 2 , . . . , n }∈

For x Kn , that is , x = ( x(1) , x(2) , . . . , x(n) ) ,  define∈

||𝑥||
𝑝

= (|𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝

Then || ||p is a norm on Kn

When p = 1 ,

Then , ||x||1 = |x(1)| + |x(2)| + . . . + |x(n)|

Since |x(i)| 0 i = 1 , 2 , . . . , n   , ||x||1 0≥ ∀ ≥

And ||x||1 = 0 |x(1)| + . . .  +|x(n)| = 0⇔

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0                          ⇔

Now ||kx||1 =  |kx(1)| + |kx(2)| + . . . + |kx(n)|

= |k| |x(1)| + . . . + |k| |x(n)|

= |k| ( |x(1)| + . . . + |x(n)| )

= |k| ||x||1

||x + y||1 = |(x + y)(1)| + . . . + |(x + y)(n)|

= |x(1) + y(1)| + . . . + |x(n) + y(n)|

|x(1)| + |y(1)| + . . . + |x(n)| + |y(n)|≤

= |x(1)| + . . . + |x(n)| + |y(1)| + . . . + |y(n)|

= ||x||1 + ||y||1
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Consider 1<p<∞

Now  , ||𝑥||
𝑝

= ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

Since x(i) 0 i , we have ||x||p 0| |𝑝 ≥ ∀ ≥

And ||𝑥||
𝑝

= 0⇔( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝 = 0

= 0 i⇔ |𝑥(𝑖)|𝑝 ∀

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0 .                          ⇔
Now

||𝑘𝑥||
𝑝

= ( |𝑘𝑥(1)|𝑝 +.  .  .  + |𝑘𝑥(𝑛)|𝑝)1/𝑝

= ( |𝑘|𝑝 |𝑥(1)|𝑝 +.  .  .  + |𝑘|𝑝 |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ||𝑥||
𝑝 .

              ||𝑥 + 𝑦||
𝑝

= ( |𝑥(1) + 𝑦(1)|𝑝 +.  .  .  + |𝑥(𝑛) + 𝑦(𝑛)|𝑝 )1/𝑝

We have by Minkowski’s inequality ,

+
𝑖=1

𝑛

∑ |𝑥(𝑖) + 𝑦(𝑖)|𝑝( )1/𝑝

≤
𝑖=1

𝑛

∑ |𝑥(𝑖)|𝑝( )
1/𝑝

𝑖=1

𝑛

∑ |𝑦(𝑖)|𝑝( )1/𝑝

Then
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||𝑥 + 𝑦||
𝑝
 ≤  |𝑥(1)|𝑝 +.  .  . + |𝑥(𝑛)|𝑝( )

1/𝑝
+  |𝑦(1)|𝑝 +.  .  .  + |𝑦(𝑛)|𝑝( )

1/𝑝

= ||𝑥||
𝑝

+ ||𝑦||
𝑝

Then , for 1 p< , is a norm on Kn≤ ∞ || ||
𝑝

When p = , define∞ ||𝑥||
∞

= 𝑚𝑎𝑥 { |𝑥(1)| , |𝑥(2)| ,.  .  .  , |𝑥(𝑛)| }

Then it is a norm on Kn

0 since each values |x(i)| 0||𝑥||
𝑝 

≥ ≥

So that

max {|x(i)| , i=1, . . . , n} 0≥

= 0||𝑥||
∞

= 0 ⇔𝑚𝑎𝑥 { |𝑥(𝑖)| : 𝑖 = 1,.  .  .  , 𝑛 }

|x(i)| = 0 i⇔ ∀

x(i) = 0 , i⇔ ∀

x = 0⇔

||𝑘𝑥||
∞

 =  𝑚𝑎𝑥 { |𝑘𝑥(1)| ,.  .  .  , |𝑘𝑥(𝑛)| }

= max { |k| |x(1)| , . . . , |k| |x(n)|}

= |k| max {|x(1)| , . . . , |x(n)|}

= |k| ||x||
∞

||x + y| = max { |x(1) + y(1)| , . . . , |x(n) + y(n)| }|
∞

max { |x(1)| + |y(1)| , . . . , |x(n)| + |y(n)| }≤
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max { |x(1)| , . . . , |x(n)| } + max { |y(1)| , . . . , |y(n)| }≤

= ||x| + ||y||
∞

|
∞

2) Sequence space

Let 1 p < , = { x = ( x(1) , x(2) , . . . ) ;  x(i) K and x(j) < } , that is , is the≤ ∞ 𝑙𝑝 ∈
𝑗=1

∞

∑ | |𝑝 ∞ 𝑙𝑝

space of p-summable scalar sequences in K . For x = (x(1) , x(2) , . . . ) ,∈ 𝑙𝑝

let ||x||p = ( |x(1)|p + |x(2)|p + . . . )1/p . Then it is a norm on lp.

That is , || ||p is a function from lp to R .

If p = 1 , then l1 is a linear space and ||x||1 = ( |x(1)| + |x(2)| + . . . ) is a norm on l1

Let p = . Then is the linear space of all bounded scalar sequences . And ,∞ 𝑙∞

||x = sup { |x(j)| : j = 1, 2, 3, . . . }||
∞

Then is a norm on|| ||
∞

𝑙∞
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   CHAPTER 2

THEOREMS ON NORMED SPACES

a) Let  Y  be a subspace of a normed space X , then Y and its closure  are normed spaces with𝑌
the induced norm.

b) Let Y be  a closed subspace of a normed space X , for x +Y in the quotient space X/Y, let
|||x +Y||| = inf { ||x+y|| : y Y} . Then |||   ||| is a norm on X/Y , called the quotient norm.∈

        A sequence (xn + Y) converges to x + Y in X/Y iff there is a sequence (yn) in Y , (xn+ yn)
converges to x in X.

c) Let || ||pbe a norm on the linear space Xp , j = 1,2,…. . Fix p such that 1 p≤ ≤∞

For x = (x(1) , x(2) , … , x(m))   that  is the product space X =X1× X2 × …× Xm ,

  Let , if 1  p <||𝑥||
𝑝
 =   ||𝑥(1)||

1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

≤ ∞

 ||x||p = max { ||x(1)||1 , … , ||x(m)||m }   ,   if p = .∞

 Then ||   ||p is a norm on X.

A sequence (xn) converges to x in  X (xn(j)) converges to x(j) in Xj      j=1,2,…,m.  ⇔ ∀

Proof:

a) Since X is a normed space, there is a norm on X to Y . Since  Y is a subspace of X,   

||  ||y: Y   R is a function. To show that ||  ||y is a norm on Y.       →

For y  Y ,    || y||Y  = ||y|| , then∈

||y||Y   ( ∵||y||  0 )    and     ||y||Y = 0 y = 0≥ 0  ≥ ⇔

||ky||Y = ||ky|| = |k| ||y|| = |k| ||y||y .

Let y1 , y2  Y.  Then ,∈

||𝑦
1

+ 𝑦
2
||

𝑦
= ||𝑦

1
+ 𝑦

2
|| ≤ ||𝑦

1
|| + ||𝑦

2
|| = ||𝑦

1
||

𝑦
+ ||𝑦

2
||

𝑦

Now the continuity of addition and scalar multiplication shows that  is a subspace of X, since if𝑌
xn  x and yn y ,   xn , yn   , then→ → ∈ 𝑌

xn + yn  x + y (by continuity of addition)    and→
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kxn  kx (by continuity of scalar Xn) .→

Since   is closed , x + y and kx .  Therefore   X.𝑌 ∈ 𝑌 ∈ 𝑌 𝑌 ≤

  norm on X induces a norm on Y and∴ 𝑌

b) X/Y , the quotient space equals X/Y={ x + Y : x X }.∈

|||x + y||| = inf { ||x + y|| : y Y }∈

Claim: |||  ||| is a norm on X/Y , called quotient norm

• Let x X ,∈

|||x + Y||| = inf { ||x + y|| : y Y }   0.∈ ≥

|||x + Y|||  0 .∴ ≥

   If |||x + y||| = 0 ( 0 in X/Y is Y) , then there is a sequence (yn) in Y    ∋

 ||x + yn ||  0→

                           ⇒                x + yn  0→

                           ⇒                 yn  -x→

Since yn Y and Y is closed∈

-x Y   ⇔ x Y ( Y is a subspace)∈ ∈ ∵

                    ⇔x + Y = Y , zero in X/Y.

• For k K ,∈

|||k(x + Y)||| = |||kx + Y|||

                                          = inf { ||k(x + y)|| : y Y}∈

                                          = inf { |k| ||x + y|| : y Y}∈

                                          = |k| inf { ||x + y|| : y Y}∈

= |k| |||x + Y||| .

• Let x1 , x2 X . Then∈

               |||x1 + Y||| = inf { ||x1 + y|| : y Y } . Then y1  Y∈ ∃ ∈ ∋

               |||x1 + Y||| +   >  ||x1 + y1|| ,  and
ε
2
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                  |||x2 + Y||| = inf { ||x2 + y|| : y Y}  , Then   y2 Y  ∈ ∃ ∈ ∋

                                |||x2 + Y||| +   >  ||x2 + y2|| .
ε
2

||x1 + y1 + x2 + y2 ||     ||x1 + y1|| + ||x2 + y2||≤

  |||x1 + Y||| + + |||x2 + Y||| +≤ ε
2

ε
2

Let y = y1 + y2 Y . Then ,∈

                    ||(x1+x2) + y||   |||x1 + Y||| + |||x2 + Y||| + ℇ    —(1)≤

Now ,  |||(x1 + Y) + (x2 + Y)||| = |||x1 + x2 + Y|||

                                                =inf { ||x1 + x2 + y|| : y Y }∈

                                             < ||x1 + x2 + y||

                                           |||x1 + Y||| + |||x2 + Y||| + ℇ          (by (1) )≤

since ℇ is arbitrary , we have  

|||(x1 + Y) + (x2 + Y)|||   |||x1 + Y||| + |||x2 + Y|||≤

∴ |||   |||  is a norm on X/Y.

Let (xn + Y) be a sequence in X/Y . Assume that (yn) is a sequence in Y   (xn + yn) converges∋
to x in X.

That is ,  (xn - x + yn) converges to 0 .      —(1)

Claim: (xn + Y) converges to x + Y.

  Consider

|||xn + Y -  (x+Y)||| = |||(xn - x) + Y|||

                                                       = inf { ||xn - x + yn|| : y Y }∈

                                                        ||xn - x + yn||      yn Y .≤ ∀ ∈

Then by (1) , xn + Y converges to x + Y in X/Y.

   Conversely assume that the sequence (xn + Y)  x + Y in X/Y.→

   Consider |||xn + Y - (x + Y)||| = |||xn - x + Y|||

                                                    = inf { ||xn -x + y|| : y Y }∈

Then we can choose yn Y ∈ ∋
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                       ||xn - x + yn|| <  |||(xn - x) + Y||| + ,  n=1,2,3,….1
𝑛

Since xn+Y  x+Y , we get→

             (xn - x + yn) converges to zero as n →∞

That is , (xn + yn) converges to x in X as n →∞

c) Consider   1  p < ≤ ∞

          Given that

||𝑥||
𝑝 

= (||𝑥(1)||
1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝 )1/𝑝

  Clearly , ||x||p  0 .  ≥

  Since each ||𝑥(𝑖)||
𝑖
𝑝 ≥ 0 .

              ||x||p = 0  ⇔   = 0   ∀ j = 1, . . . ,m|𝑥(𝑗)|
𝑗
𝑝

                                         ⇔  x(j) = 0           ∀ j.

                                         ⇔  x = (x(1), . . . ,x(m)) = 0

                    ||kx||p =                            ||𝑘𝑥(1)||
1
𝑝 +.  .  . + ||𝑘𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

   =  |𝑘|𝑝||𝑥(1)||
1
𝑝 +.  .  . + |𝑘|𝑝||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                            = |𝑘|  ||𝑥(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

, k K and x X= |𝑘| ||𝑥||
𝑝

∈ ∈

Now, ||𝑥 + 𝑦||
𝑝

=  ||𝑥(1) + 𝑦(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚) + 𝑦(𝑚)||

𝑚
𝑝( )1/𝑝

  (by Minkowski’s inequality)

                                 ≤

 ||𝑥(1)||
1

+ ||𝑦(1)||
1( )𝑝 +.  .  .  +  ||𝑥(𝑚)||

𝑚
+ ||𝑦(𝑚)||

𝑚( )𝑝( )1/𝑝

                                 +          (Minkowski’s inequality )≤
𝑗=1

𝑚

∑ ||𝑥(𝑗)||
𝑗
𝑝( )1/𝑝

𝑗=1

𝑚

∑ ||𝑦(𝑗)||
𝑗
𝑝( )1/𝑝
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                                =  ||𝑥(1)||
1
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                                = ||x||p + ||y||p

        Now suppose  p =      ∞

  ||x||∞  = max { ||x(1)||1 , . . . , ||x(m)|| m }

||x||∞  0   Since ||x(j)||   0 ,       ∀ j≥ ≥

||x||∞  = 0          ⇔  ||x(m)|| = 0      ∀ m

                                       ⇔  x(m) = 0      ∀ m

                                       ⇔ x = 0

||kx||∞  = max { ||kx(1)||1 , . . . ,  ||kx(m)||m }

               = |k| max { ||x(1)||1 , . . . , ||x(m)||m }       

   =  |k| ||x||∞

||x + y||∞ = max { ||x(1) + y(1)||1, . . . , ||x(m) + y(m)||m }

                  max { ||x(1)||1 + ||y(1)||1 , . . . , ||x(m)||m + ||y(m)||m }≤

                                =  max { ||x(1)||1 , . . . ,  ||x(m)||m }   + max { ||y(1)||1 , . . . , ||y(m)||m }

                                = ||x||∞ + ||y||∞

We now consider  ,  

||𝑥
𝑛

− 𝑥(1)||
𝑝

=  ||𝑥
𝑛
(1) − 𝑥(1( )||

1
𝑝 +.  .  . + ||𝑥

𝑛
(𝑚) − 𝑥(𝑚)||

𝑚
𝑝 )

1/𝑝

Then  

xn  x in X      ⇔  ||xn - x ||p   0 → →

                                        ⇔  ||xn(j) - x(j)  0||
𝑗
𝑝 →

                                        ⇔  xn(j) - x(j)  → 0

                                        ⇔  xn(j) → x(j) in X j .∀
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RIESZ  LEMMA

Let be a normed space . be a closed subspace of and . Let be a real number𝑋 𝑌 𝑋 𝑋 ≠ 𝑌 𝑟
such that . Then there exist some xr X such that ||xr||  = 1 and0 < 𝑟 < 1 ∈

r<dist ( xr , Y ) 1≤

Proof :

We have ,

dist (x , Y) = inf { d(x , y) : y Y}∈

= inf { ||x - y|| : y Y}∈

Since Y X , consider x X x Y.≠ ∈ ∋ ∉

If dist(x , Y) = 0 , then ||x - y|| = 0 x = Y ( ∵ Y is closed )⇒ ∈𝑌

Therefore ,

dist (x , Y) 0≠

That is ,

dist (x , Y) > 0

Since 0 < r < 1  , > 1
1
𝑟

> dist (x , Y)⇒
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟

That is  , is not a lower bound of { ||x - y|| : y Y }
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟 ∈

Then y0 Y ||x - y0|| < (1)∃ ∈ ∋
𝑑𝑖𝑠𝑡(𝑥 , 𝑌)

𝑟    →

Let xr = . Then xr X
𝑥 −  𝑦

0

||𝑥 − 𝑦
0
|| ∈

( ∵y0 Y , x Y x - y0 X and ||x - y0|| 0 )∈ ∉ ⇒ ∈ ≠
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Then ||xr|| =|| || = = 1
𝑥 − 𝑦

0

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

Now to prove r < dist( ) 1𝑥
𝑟
, 𝑌 ≤

We have dist(xr , Y) = inf { ||xr - y|| : y Y }∈

||xr - y|| y Y≤ ∀ ∈

In particular, 0 , so that dist(xr , Y) ||xr - 0|| = 1∈ 𝑌 ≤

That is ,

dist (xr , Y) 1≤

Now ,

dist (xr , Y) = dist ( , Y )
𝑥 − 𝑦

0

||𝑥−𝑦
0
||

= dist ( x - y0 , Y)
1

||𝑥−𝑦
0
||

= inf { ||x - y0 - y|| : y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= inf {||x - (y0+ y)|| : y0 + y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= dist (x , Y)
1

||𝑥−𝑦
0
||

> dist (x , Y)    by (1)
𝑟

𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

dist (xr , Y) > r⇒

That is ,

r < dist (xr , Y) 1≤
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CONCLUSION

This project discusses the concept of normed linear space that is fundamental to
functional analysis . A normed linear space is a vector space over a real or complex
numbers ,on which the norm is defined . A norm is a formalization and generalization to
real vector spaces of the intuitive notion of “length” in real world

In this project , the concept of a norm on a linear space is introduced and thus
illustrated . It mostly includes the properties of normed linear spaces and different proofs
related to the topic.
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INTRODUCTION 

 

A  Number Theoretic Function is a complex valued function defined for all positive 

integers. In Number Theory, there exist many number theoretic functions. This 

includes Divisor Function, Sigma Function, Euler’s-Phi Function and Mobius 

Function. All these functions play a very important role in the field of Number 

Theory. 

In the first chapter we will discuss about Arithmetic Function. In the second chapter 

we will introduce Euler’s-Phi Function and Mobius Function. 
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PRELIMINARY  

Let n be a fixed positive integer. Two integers a and b are said to be congruent 

modulo n, symbolized by 

a ≡ b (mod n) 

if n divides the difference a − b; that is, provided that a − b = kn for some integer k. 

Example: 

To fix the idea, consider n = 7. It is routine to check that 

3 ≡ 24 (mod 7)        − 31 ≡ 11 (mod 7)          − 15 ≡ −64 (mod 7) 

Because  3 − 24 = (−3)7,   −31 − 11 = (−6)7   and  −15 − (−64) = 77. When 

n does not divide (a − b),  we say that a is incongruent to b modulo n, and in this case 

we write 

a ≢ b (mod n). For a simple example: 25 ≢ 12 (mod 7), because 7 fails to divide 

25 − 12 = 13. 

It is to be noted that any two integers are congruent modulo 1, whereas two integers 

are congruent modulo 2 when they are both even or both odd. In as much as 

congruence modulo 1 is not particularly interesting, the usual practice is to assume 

that  n > 1. 

Remark: 

Given an integer a, let q and r be its quotient and remainder upon division by n,        

so that 

a = qn + r    0 ≤ r < n 

Then, by definition of congruence, a ≡ r (mod n). Because there are n choices for 

r , we see that every integer is congruent modulo n to exactly one of the values 

0, 1, 2, . . . , n − 1;  in particular, a ≡ 0 (mod n) if and only if n | a. 
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Fundamental Theorem of Arithmetic 

is Every integer 𝑛 > 1 can be represented as Product of prime factor in only one way, 

apart from the order of the factors. 

 

Residue 

If a is an integer and 𝑚 is a positive integer then the residue class of a modulo 𝑚 is 

denoted by 𝑎̂ and is given by 

𝑎̂  = {𝑥: 𝑥 ≡ 𝑎(𝑚𝑜𝑑𝑚)}

 = {𝑥: 𝑥 = 𝑎 + 𝑚𝑘,  𝑘 = 0, ±1, ±2, ⋯ }
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CHAPTER 1 

ARITHMETIC FUNCTION 

An arithmetic Function is a function defined on the positive integers which take 

values in the real or complex numbers. i.e., A function   f: N→ C is called an 

arithmetic function. 

An arithmetic function is called multiplicative if f(mn) = f(m)f(n) for all coprime 

natural numbers m and n. 

Examples  

a) Sum of divisors 𝜎(n) 

b) Number of divisors 𝜏(n) 

c) Euler’s function 𝜙(n) 

d) Mobius function 𝜇(n) 

 

Definition 1.1 

Given a positive integer n, let τ (n) denote the number of positive divisors of n and 

σ(n) denote the sum of positive divisors of n. 

Example 

Consider n = 12. Since 12 has the positive divisors 1, 2, 3, 4, 6, 12, we find that 

τ (12) = 6   and   σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 

For the first few integers, 

τ (1) = 1         τ (2) = 2     τ (3) = 2      τ (4) = 3     τ (5) = 2      τ (6) = 4, . . . 

σ(1) = 1,         σ(2) = 3,    σ(3) = 4,      σ(4) = 7 ,    σ(5) = 6,      σ(6) = 12, . . . 

It is not difficult to see that   τ (n) = 2   if and only if n is a prime number; also,        

σ(n) = n + 1   if and only if n is a prime. 
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Theorem 1.1 

If    n = 𝑝1
𝑘1 … … … … . 𝑝𝑟

𝑘𝑟  is the prime factorization of n > 1, then 

(a) τ (n) = (k1+ 1)(k2 + 1) ・ ・ ・ (kr + 1), and   

(b) σ(n) =   
𝑝1

𝑘1+1
−1

𝑝1−1
… … … … … … … .

𝑝𝑟
𝑘𝑟+1

−1

𝑝𝑟−1
 

Proof 

The positive divisors of n are precisely those integers 

d = 𝑝1
𝑎1  𝑝2

𝑎2 … … . . 𝑝𝑟
𝑎𝑟 

where 0 ≤ ai ≤ ki . There are k1 + 1 choices for the exponent a1;  k2 + 1 choices for a2, . 

. . ; and kr + 1 choices for ar . Hence, there are 

(k1 + 1)(k2 + 1) · · · (kr + 1) 

possible divisors of n. 

To evaluate σ(n), consider the product 

(1 + 𝑝1 +  𝑃1
2 + ⋯ … … … 𝑃1

𝐾1) (1 + 𝑝2 +  𝑃2
2 + ⋯ … … … 𝑃2

𝐾2)……………….. 

………….(1 + 𝑝𝑟 +  𝑃𝑟
2 + ⋯ … … … 𝑃𝑟

𝐾𝑟) 

Each positive divisor of n appears once and only once as a term in the expansion of 

this product, so that 

σ(n) = (1 + 𝑝1 +  𝑃1
2 + ⋯ … … … 𝑃1

𝐾1) (1 + 𝑝2 +  𝑃2
2 + ⋯ … … … 𝑃2

𝐾2)……………….. 

            ………….(1 + 𝑝𝑟 +  𝑃𝑟
2 + ⋯ … … … 𝑃𝑟

𝐾𝑟) 

Applying the formula for the sum of a finite geometric series to the ith factor on the 

right-hand side, we get 

(1 + 𝑝𝑖 +  𝑃𝑖
2 + ⋯ … … … 𝑃𝑖

𝐾𝑖) =  
𝑝𝑖

𝑘𝑖+1
− 1

𝑝𝑖 − 1
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It follows that 

 σ(n) =   
𝑝1

𝑘1+1
−1

𝑝1−1
… … … … … … … .

𝑝𝑟
𝑘𝑟+1

−1

𝑝𝑟−1
 . 

 

Corresponding to the ∑ notation for sums, the notation for products may be 

defined using ∏ , the Greek capital letter pi. The restriction delimiting the numbers 

over which the product is to be made is usually put under the  ∏ 

sign. 

Examples 

 

With this convention, the conclusion to Theorem 1.1 takes the compact form: if 

n = 𝑝1
𝑘1  𝑝2

𝑘2 … … . . 𝑝𝑟
𝑘𝑟  is the prime factorization of n > 1, then 

                                                                                        

and                                               
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Theorem 1.2    

The functions τ and σ are both multiplicative functions 

Proof 

Let m and n be relatively prime integers. Because the result is trivially true if 

either m or n is equal to 1, we may assume that m > 1 and n > 1. If 

         

are the prime factorizations of m and n . It follows that the prime factorization of 

the product mn is given by 

                 

Applying to theorem 1.1, we obtain 

                 

In a similar fashion, theorem 1.1 gives 

             

Thus, τ and σ are multiplicative functions. 

Theorem 1.3 

If f is a multiplicative function and F is defined by 

                  

then F is also multiplicative. 
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Proof 

Let m and n be relatively prime positive integers. Then 

             

because every divisor d of mn can be uniquely written as a product of a divisor d1 

of m and a divisor d2 of n, where gcd(d1, d2) = 1. By the definition of a 

multiplicative function, 

              f (d1d2) = f (d1) f (d2) 

It follows that 

              

It might be helpful to take time out and run through the proof of Theorem 1.3 

in a concrete case. Letting m = 8 and n = 3, we have 

                             

= f (1) + f (2) + f (3) + f (4) + f (6) + f (8) + f (12) + f (24) 

= f (1 · 1) + f (2 · 1) + f (1 · 3) + f (4 · 1) + f (2 · 3)+ f (8 · 1) + f (4 · 3) + f (8 · 3) 

= f (1) f (1) + f (2) f (1) + f (1) f (3) + f (4) f (1) + f (2) f (3)+ f (8) f (1)                                             

.   + f (4)f(3)+ f (8) f (3)          
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= [ f (1) + f (2) + f (4) + f (8)][ f (1) + f (3)] 

 

= F(8)F(3) 

Theorem 1.3 provides a deceptively short way of drawing the conclusion that τ 

and σ are multiplicative 

 

The Mangoldt function 𝚲(𝒏) 

Definition 1.2 

For every integer 𝑛 ≥ 1 we define 

Λ(𝑛) = {
log 𝑝  if 𝑛 = 𝑝𝑚 for some prime 𝑝 and some 𝑚 ≥ 1 , 

0  otherwise. 
 

Here is a short table of values of Λ(𝑛) : 

𝑛: 1 2 3 4 5 6 7 8 9 10
Λ(𝑛): 0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0

 

The proof of the next theorem shows how this function arises naturally from the 

fundamental theorem of arithmetic. 

Theorem 1.4 

If 𝑛 ≥ 1 we have 

                                                    log 𝑛 = ∑  

𝑑∣𝑛

Λ(𝑑) … … … … … … … … … … … … (1) 

Proof  

The theorem is true if 𝑛 = 1 since both members are 0 . Therefore, assume that 𝑛 > 1 

and write 
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𝑛 = ∏  

𝑟

𝑘=1

𝑝𝑘 𝑎𝑘 

Taking logarithms we have 

log 𝑛 = ∑  

𝑟

𝑘=1

𝑎𝑘log 𝑝𝑘 

Now consider the sum on the right of (1). The only nonzero terms in the sum come 

from those divisors 𝑑 of the form 𝑝𝑘 𝑚 for 𝑚 = 1,2, … , 𝑎𝑘 and 𝑘 = 1,2, … , 𝑟. Hence 

∑  

𝑑∣𝑛

Λ(𝑑) = ∑  

𝑟

𝑘=1

∑  

𝑎𝑘

𝑚=1

Λ(𝑝𝑘
𝑚) = ∑  

𝑟

𝑘=1

∑  

𝑎𝑘

𝑚=1

log 𝑝𝑘 = ∑  

𝑟

𝑘=1

𝑎𝑘log 𝑝𝑘 = log 𝑛 

which proves (1). 
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CHAPTER 2 

EULER’S 𝝓 FUNCTION 

Let n be positive integer. Let Un denote the set of all positive integers less than n and 

coprime to it 

For example, 

                U6  =  {1,5} 

                U10  =  {1,3,7,9} 

                  U18  =  {1,5,7,11,13,17} 

 

Definition 2.1 

Euler’s 𝜙 function is a function 𝜙: N→N such that for any n ∈ N, 𝜙 (n) is the number 

of integers less than n and coprime to it 

In other words 

‘Euler’s 𝜙 function counts the number of elements in Un’ 

For example,    

𝜙(1) = 1, 𝜙(2) = 1, 𝜙(3) = 2, 𝜙(4) = 2, 𝜙(5) = 4
𝜙(6) = 2 … .

 

Theorem 2.1 

Let p be a prime. Then 𝜙 (p) = p-1 

Proof: 

By definition, any natural number strictly less than p is coprime to p, hence 

   𝜙 (p) = p-1  

 

Theorem 2.2 

If 𝑝 is a prime and 𝑘 > 0, then 

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1) 
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Proof: 

Consider the successive pk natural numbers not greater than pk  arranged in the 

following rectangular array of  p columns and  pk-1 rows 

1     2          .       .     p  

p+1     p+2          .       .    2p 

.     .          .       .     . 

.     .          .       .     .  

pk-p+1     pk-p+2      .      .     pk 

among these numbers only the ones at the rightmost sides are not coprime to pk and 

there are pk-1 members in that column. So  

   

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1). 

 

For example,  𝜙(8) = 23 − 22 = 4  which counts the number of elements in the set 

 U8  =  {1,3,5,7} 

By the fundamental theorem of arithmetic, we can write any natural number n as  

                                    n= 𝑝1
𝑘1 … … … . . 𝑝𝑟

𝑘𝑟 

where 𝑃𝑖  ‘s are distinct prime and k𝑖 ≥ 1  are integers. We already know how to find 

𝜙(𝑝𝑖
𝑘𝑖)  we would lie to see how 𝜙(𝑛) is related to 𝜙(𝑝𝑖

𝑘𝑖). This follows from a very 

important property of Euler’s 𝜙 Function 

 

Multiplicativity of Euler’s 𝝓 Function 

Theorem 2.3 

𝜙(mn) = 𝜙(m)𝜙(n) if  m and n are coprime natural numbers. 

Proof: 
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Consider the array of natural numbers not greater than mn arranged in m columns  and 

n rows in the following manner 

1 2 ⋯ 𝑟 ⋯ 𝑚
𝑚 + 1 𝑚 + 2 𝑚 + 𝑟 2𝑚

2𝑚 + 1 2𝑚 + 2 2𝑚 + 𝑟 3𝑚
⋮ ⋮ ⋮ ⋮

(𝑛 − 1)𝑚 + 1 (𝑛 − 1)𝑚 + 2 (𝑛 − 1)𝑚 + 𝑟 𝑛𝑚

 

Clearly each row of the above array has m distinct residues modulo m. Each column 

has n distinct residues modulo n: for 1 ≤ 𝑖, 𝑖 ≤ 𝑛 − 1 

im +j ≡ im + j (mod n) 

⇒ im ≡ im (mod n) 

⇒ i ≡ i (mod n)      (as gcd(m,n) = 1) 

⇒ i ≡ i 

Each row has 𝜙(m) residues coprime to m, and each column has 𝜙(n) residues 

coprime to n. Hence in total 𝜙(m)𝜙(n) elements in the above array which are 

coprime to both m and n, it follows that 

𝜙(mn) = 𝜙(m)𝜙(n) 

 

Theorem 2.4  

Let n be any natural numbers, then  

𝜙(𝑛) = 𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) ⋯ (1 −

1

𝑝𝑟
)  

Proof:   

By fundamental theorem of arithmetic, we can write  

𝑛 = 𝑃1
𝑘1𝑃2

𝑘2 … … . … 𝑃𝑟
𝑘𝑟 

Where 𝑝𝑖 are the distinct prime factor of n, and 𝑘𝑖 are the non negative integers. By 

previous theorem and proposition, 

  𝜙(𝑛) = 𝜙(𝑝1
𝑘1) ⋅ … , 𝜙(𝑝𝑟

𝑘𝑟) 

            =  𝑃1
𝑘1−1(𝑃1 − 1) ⋯ 𝑃𝑟

𝑘𝑟−1(𝑃𝑟 − 1) 
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            =  𝑝1
𝑘1 (1 −

1

𝑃1
) ⋯ 𝑃𝑟

𝑘𝑟 (1 −
1

𝑃𝑟
) 

   =  𝑛 (1 −
1

𝑝1
) ⋯ ⋅ (1 −

1

𝑝𝑟
)  

Theorem 2.5 

For n > 2,  𝜙 (n) is an even integer. 

Proof: 

First, assume that n is a power of 2, let us say that n = 2k ,  with k ≥ 2. By 

theorem 2.2, 

𝜙(𝑛) = 𝜙(2𝑘) = 2𝑘 (1 −
1

2
) = 2𝑘−1 

an even integer. If 𝑛 does not happen to be a power of 2, then it is divisible by an odd 

prime 𝑝; we therefore may write 𝑛 as 𝑛 = 𝑝𝑘𝑚, where 𝑘 ≥ 1 and gcd (𝑝𝑘, 𝑚) = 1. 

Exploiting the multiplicative nature of the phi-function, we obtain 

                                       𝜙(𝑛) = 𝜙(𝑝𝑘)𝜙(𝑚) = 𝑝𝑘−1(𝑝 − 1)𝜙(𝑚) 

which again is even because 2 | p – 1. 

 

Theorem 2.6 

For each positive integer n, 

  

𝑛 = ∑  

𝑑∣𝑛

𝜙(𝑑) 

Proof: 

Let us partition the set {1,2,…….,n} into mutually disjoint subsets Sd for each d/n, 

where  

𝑆𝑑 = {1 ≤ 𝑚 ≤ 𝑛 ∣ gcd (𝑚, 𝑛) = 𝑑} 

                                              =  {1 ≤
𝑚

𝑑
≤

𝑛

𝑑
∣ gcd (

𝑚

𝑑
,

𝑛

𝑑
) = 1} 

Then 
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 {1,2, … … . , n}  = ∑  

𝑑∣𝑛

𝑆𝑑 

⇒            𝑛 = ∑  

𝑑∣𝑛

𝜙 (
𝑛

𝑑
) 

                    = ∑  

𝑑∣𝑛

𝜙(𝑑) 

As for each divisor of n, n/d is also a divisor of n 

 

MOBIUS FUNCTION 

Definition 2.2 

The Mobius function  𝜇: 𝑁 ⟶ {0, ±1} is defined as  

𝜇(𝑛) = {

1     if 𝑛 = 1
0     if 𝑝2 𝑛⁄  for some prime 𝑝

(−1)𝑟      if 𝑛 = 𝑝1𝑝2 ⋯ 𝑝𝑟 , where 𝑝𝑖 are distinct primes 

 

For example,  

μ(1) = 1          μ(2) = −1              μ(3) = −1 

 μ(4) = 0        μ(5) = −1               μ(6) = 1 

If 𝑝 is a prime number, it is clear that 𝜇(𝑝) = −1; in addition, 𝜇(𝑝𝑒) = 0 for 𝑒 ≥ 2. 

Theorem 2.7 

The Mobius function is a multiplicative function i.e.  

μ(mn) = μ(m)μ(n), if m and n are relatively prime 

Proof: 

Let m and n be coprime integers, we can consider the following to cases 

Case 1:  let μ(mn) = 0 then there is a prime p such that  
𝑝2

𝑚𝑛⁄ . As m and n are 

coprime p cannot divide both m and n hence either 
𝑝2

𝑚⁄  or  
𝑝2

𝑛⁄  . Therefore either   

μ(m) = 0 or μ(n) = 0 and we have μ(mn) = μ(m)μ(n) 

Case 2: suppose that μ(mn) ≠ 0 then mn is square free, hence so are m and n. let  



16 
 

𝑚 =  𝑝1 … … … 𝑝𝑟   and 𝑛 =  𝑞1 … … … 𝑞𝑠   where 𝑝𝑖 𝑎𝑛𝑑 𝑞𝑗  are all distinct primes then 

mn = 𝑝1 … … … 𝑝𝑟𝑞1 … … … 𝑞𝑠 where all the primes occurring in the factorization of 

mn are distinct. Hence  

 𝜇(𝑚𝑛) = (−1)𝑟+𝑠   

              = (−1)𝑟(−1)𝑠        

              =  μ(m)μ(n) 

Theorem 2.8 

      

∑  

𝑑∣𝑛

𝜇(𝑑) = {
1     if 𝑛 = 1
0     if 𝑛 > 1

 

Where d runs through all the positive divisors of n. 

Proof:  

𝐿𝑒𝑡   𝐹(𝑛)  = ∑  

𝑑∣𝑛

𝜇(𝑑) 

As  μ is multiplicative, so is F(n) by the theorem (F be a multiplicative arithmetic  

function  𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑)  then F is also a multiplicative arthmetic function)  

Clearly  

𝐹(1) = ∑  

𝑑∣𝑛

𝜇(𝑑) 

             = μ(1) 

             = 1 

For integers which are  prime power, i.e. of the form pk for some k ≥ 1 

                                    𝐹(𝑝2) = μ(1) + μ(p) + μ(p2) + ⋯ … … … . . +μ(p𝑘)    

                  = 1 + (-1) + 0……………+ 0 

                 = 0 

Now consider any integer n, and consider its prime factorization. Then  

      𝑛 = 𝑝1
𝑘1 … … … … … . 𝑝𝑟

𝑘𝑟 ,         𝑘𝑖 ≥ 1 
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 ⇒    𝐹(𝑛) =  ∏𝐹(𝑝𝑖
𝑘𝑖) 

        = 0 

Mobius inversion formula 

The following theorem is known as Mobius inversion formula 

Theorem 2.9 

Let F and  f  be two function from the set N of natural number to the field complex 

number C such that  

𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑) 

Then we can express f(n) as   

𝑓(𝑛) = ∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) 

         = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝐹(𝑑) 

Proof: 

First observe that if d is divisor of n so is n/d. Hence both the summation in the last 

line of  the theorem are same. Now  

∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) = ∑  

𝑑∣𝑛

(𝜇(𝑑) ∑  

𝑐∣(𝑛/𝑑)

𝑓(𝑐)) 

The crucial step in the proof  is to observe that the set of S of pairs of integers (c,d) 

with d|n and c|n/d is the same as the set T of pairs (c,d) with c/n and d|n/c. 

∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) = ∑  

𝑑∣𝑛

(𝜇(𝑑) ∑  

𝑐∣(𝑛/𝑑)

𝑓(𝑐)) 

      

                           = ∑  

𝑑∣𝑛

( ∑  

𝑐∣(𝑛/𝑑)

𝜇(𝑑)𝑓(𝑐)) 

     



18 
 

             = ∑  

(𝑐,𝑑)∈𝑆

𝑓(𝑐)𝜇(𝑑) 

           = ∑  
(𝑐,𝑑)∈𝑇

𝑓(𝑐)𝜇(𝑑) 

                         = ∑  

𝑐∣𝑛

(𝑓(𝑐) ∑  

𝑑∣(𝑛/𝑐)

𝜇(𝑑)) 

       = F(n) 

𝐴𝑠 ∑  

𝑑∣𝑛

𝜇(𝑑) = 0    𝑢𝑛𝑙𝑒𝑠𝑠 𝑛
𝑐⁄ = 1, which happens when c = n  

Let us demonstrate this with n = 15  

∑  

𝑑∣15

𝜇(𝑑)𝐹 (
15

𝑑
) = 𝜇(1)[ 𝑓 (1) +  𝑓 (3) +  𝑓 (5) +  𝑓 (15)] + 𝜇(3)[ 𝑓 (1) +  𝑓 (5)] 

                                +𝜇(5)[ 𝑓 (1) +  𝑓 (3)] + 𝜇(15)[ 𝑓 (1)] 

                             = f (1)[μ(1) + μ(3) + μ(5) + μ(15)] + f (3)[μ(1) + μ(5)] + f (5)[μ(1) + 

                               μ (5)] + f(15) μ(1) 

                            = f(1).0 + f(3).0 + f(5).0 + f(15) 

                            = f(15) 

The above theorem leads to the following interesting identities  

1. we know that for any positive integer n,  

∑  

𝑑∣𝑛

𝜙(𝑑) = 𝑛 

Where 𝜙(𝑛) is Euler’s 𝜙 function. Hence  

𝜙(𝑛) =  ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝑑 

For example, 

𝜙(10) =  μ(1)10 +  μ(2)5 +  μ(5)2 + μ(10)1   
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                                               = 10 - 5 – 2 + 1 

                                               = 4 

2. similarly  

 

𝜎(𝑛) = ∑  

𝑑∣𝑛

𝑑 

                      𝑛   = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝜎(𝑑) 

For example, 

With n = 10  

μ(10). 1 + μ(2)(1 + 5) + μ(5)(1 + 3) + μ(1)(1 + 3 + 5 + 10) 

                = 1 – 1 – 5 – 1 – 3 + 1 + 3 +5 + 10 

     = 10 

We have seen before that if multiplicative so is 𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑). But we can now 

Prove that converse applying the Mobius inversion formula 

Theorem 2.10 

If F is a multiplicative function and 

𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑) 

then f is also multiplicative. 

Proof: 

By the Mobius inversion formula we know that  

𝑓(𝑛) = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝐹(𝑑) 

Let m and n be relatively prime positive integers. We recall that any divisor 

d of mn can be uniquely written as d = d1, d2, where d1 |m, d2 | n, and  

gcd(d1, d2) = 1 = gcd(
𝑚

𝑑1
,

𝑛

𝑑2
). 
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Conversely if d1/m and d2/n then d1d2/mn    thus, 

𝑓(𝑚𝑛) = ∑  

𝑑∣𝑚𝑛

𝜇(𝑑)𝐹 (
𝑚𝑛

𝑑
)

= ∑  
𝑑1|𝑚
𝑑2|𝑛

𝜇(𝑑1𝑑2)𝐹 (
𝑚𝑛

𝑑1𝑑2

)

= ∑  
𝑑1|𝑚
𝑑2|𝑛

𝜇(𝑑1)𝜇(𝑑2)𝐹 (
𝑚

𝑑1

) 𝐹 (
𝑛

𝑑2

)

= ∑  

𝑑1∣𝑚

𝜇(𝑑1)𝐹 (
𝑚

𝑑1

) ∑  

𝑑2∣𝑛

𝜇(𝑑2)𝐹 (
𝑛

𝑑2

)

= 𝑓(𝑚)𝑓(𝑛)

 

In view of the above theorem we can say that as N(n) = n is a multiplicative function 

so is 𝜙(𝑛) because  

∑  

𝑑∣𝑛

𝜙(𝑑) = 𝑛 =  N(n)  
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CONCLUSION 

 

The purpose of this project gives a simple account of Arithmetic function, Euler’s phi 

function and Mobius Function. The study of these topics given excellent introduction 

to the subject called ‘NUMBER THEORETIC FUNCTION’ 

Number Theoretic Function demands a high standard of rigor. Thus, our presentation 

necessarily has its formal aspect with care taken to present clear and detailed 

argument. An understanding of the statement of the theorem, number theory proof is 

the important issue. In the first chapter we discuss about function τ and σ are both 

multiplicative function. If f is a multiplicative function and F is defined by  

𝐹(𝑛) = ∑  𝑑∣𝑛 𝑓(𝑑), then F is also multiplicative. In the second chapter 2 we discuss 

about that if p is prime the 𝜙(𝑝) = 𝑝 − 1, 𝜙(𝑚𝑛) = 𝜙(𝑚)𝜙(𝑛). The Mobius 

function is multiplicative function if f is multiplicative function and  𝐹(𝑛)=∑  𝑑∣𝑛 𝑓(𝑑), 

then F is also multiplicative. 
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INTRODUCTION 
 

 

A proper coloring of a graph is an assignment of colors to the vertices of the graph so that  

no two adjacent vertices have the same color. 

 

                     Usually we drop the word “proper” unless other types of coloring are also under  

discussion. Of course, the “colors” don’t have to be actual colors ; may can be any distinct  

labels - integers ,for examples , if a graph is not connected ,  each connected component can  

be colored independently; except where otherwise noted , we assume graphs are  

connected. We also assume graphs are simple in this section. Graph coloring has many  

applications in addition to its intrinsic interest. 

 

                        In the same way the most important concept of graph coloring is utilized in  

resource allocation, scheduling. Also, paths, walks and circuits in graph theory are used in  

tremendous applications say travelling salesman problem, database design concepts,  

resource networking. 

 

                       This project deals with coloring which is one of the most important topics in  

graph theory. In this project there are three chapters. First chapter is coloring . The second  

chapter is chromatic number. The last chapter deals with application of graph coloring. 
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BASIC CONCEPTS 

 

1. GRAPH 

      A graph is an ordered triplet. G=(V(G), E(G), I(G)); V(G) is a non empty set, E(G) is a set 

disjoint from V(G) and I(G) is an incidence map that associates each element of E(G) and  

unrecorded pair of element of V(G). The elements of V(G) are called vertices (or nodes or  

points) of G and the elements of E(G) are Called edges or lines of G. 

 

2. MULTIPLE EDGE / PARALLEL EDGE  

       A set of 2 or more edges of a graph G is called a multiple edge or parallel edge if they  

have the same  end vertices. 

 

3. LOOP 

       An edge for which the 2 end vertices are same is called a loop. 

 

4. SIMPLE GRAPH 

      A graph is simple if it has no loop and no multiple edges. 

 

5. DEGREE 

        Let G be a graph and v € V the number of edge incident at V in G is called the degree or  

vacancy of the vertex v in G. 
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CHAPTER - 1 
 

 

COLORING 
 

              

    Graph coloring is nothing but a simple way of labeling graph components such as  

vertices , edges and regions under some constraints. In a graph, no two adjacent vertices, 

adjacent edges , or adjacent regions are colored with minimum number of colors .This  

number is called the chromatic number and the graph is called properly colored graph. 

                                                  In graph theory coloring is a special case of graph labeling; it is  

an assignment of labels traditionally called “colors” to elements of a graph subject to certain  

constraints. In it simplest form, it is a way of coloring the vertices of a graph such that no  

two adjacent vertices share the same color, it is called vertex coloring. Similarly, edge 

coloring assigns a color to each edge so that no two adjacent edges share the common  

color. 

                                            While graph coloring , the constraints that are set on the graph are  

colors , order of coloring , the way of assigning color , etc.  A coloring is given to a vertex or a  

particular region . Thus, the vertices or regions having same colors form independent sets. 
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VERTEX COLORING 

                     Vertex coloring is an assignment of colors to the vertices of a graph  ‘G ’  such  

that no two adjacent vertices have the same color .Simply put , no two vertices of an edge  

should be of the same color. 

                                          The most common type of vertex coloring seeks to minimize the  

number of colors for a given graph . Such a coloring is known as a minimum vertex coloring , 

and the minimum number of colors which with the vertices of a graph may be colored is  

called the chromatic number .  

 

CHROMATIC NUMBER: 

                             The minimum number of colors required for vertex coloring  of  graph ‘ G ’   

is called as the chromatic number of G , denoted by   X (G) . 

X(G) = 1  iff  ‘ G ’   is a null graph. If  ‘G ’  is not a null graph , then X(G) ≥ 2. 

 

EXAMPLES; 

 

1.                                                                                            2.      

 

 

 

 

  

       Null Graph ( X (G)  = 1 )                                                          Not Null Graph  ( X (G) = 2 ) 
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EDGE COLORING    

                    An edge coloring of a graph G is a coloring of the edges of G such that adjacent  

edges ( or the edges bounding different regions ) receive different colors. An edge coloring 

containing the smallest possible number of colors for a given graph is known as a minimum  

edge coloring. 

                          The edge chromatic number gives the minimum number of colours with which 

graph’s edges can be colored. 

 

 

 

CHROMATIC INDEX 

                     The minimum number of colors required for proper edge coloring of graph is  

called chromatic index. 

A complete graph is the one in which each vertex is directly connected with all  

other vertices with an edge. If the number of vertices of a complete graph is n, then the 

 chromatic index for an odd number of vertices will be n and the chromatic index for even  

number of vertices will be n-1. 
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EXAMPLES; 

1.    

 

 

 

 

 

 

          The given graph will require 3 unique colors so that no two incident edges have the  

Same color. So its chromatic index will be 3. 

 

2.   

 

 

 

 

            The given graph will require 2 unique colors so that no two incident edges have  

the same color. So its chromatic index will be 2. 
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CHAPTER 2 

Chromatic Number 

 

The chromatic number of a graph is the smallest number of colors needed to color the vertices  

of so that no two adjacent vertices share the same color. That is the smallest value of possible 

to obtain a k-coloring. 

 Graph Coloring is a process of assigning colors to the vertices of a graph. 

 It ensures that no two adjacent vertices of the graph are colored with the same color. 

 Chromatic Number is the minimum number of colors required to properly color any graph. 

 

 

Graph Coloring Algorithm 

  

 There exists no efficient algorithm for coloring a graph with minimum number of colors. 

  

However, a following greedy algorithm is known for finding the chromatic number of any given 

graph. 

 

 

Greedy Algorithm 

  

Step-01: 

  

Color first vertex with the first color. 
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 Step-02: 

 Now, consider the remaining (V-1) vertices one by one and do the following- 

 

 Color the currently picked vertex with the lowest numbered color if it has not been used to 
color any of its adjacent vertices. 

 If it has been used, then choose the next least numbered color. 

 If all the previously used colors have been used, then assign a new color to the currently 
picked vertex. 

  

 

Problems Based On Finding Chromatic Number of a Graph 

  

Problem-01: 

  

Find chromatic number of the following graph- 
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Solution- 

  

Applying Greedy Algorithm, we have 

Vertex a b C d e f 

Color C1 C2 C1 C2 C1 C2 

  

From here, 

 Minimum numbers of colors used to color the given graph are 2. 

 Therefore, Chromatic Number of the given graph = 2. 

  

The given graph may be properly colored using 2 colors as shown below- 
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Problem-02: 

  

Find chromatic number of the following graph- 

  

 

 Solution- 

  

Applying Greedy Algorithm, we have- 

  

Vertex a b C d e f 

Color C1 C2 C2 C3 C3 C1 

  

From here, 

 Minimum numbers of colors used to color the given graph are 3. 

 Therefore, Chromatic Number of the given graph = 3. 
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The given graph may be properly colored using 3 colors as shown below- 

  

 

 

Chromatic Number of Graphs 

  

Chromatic Number of some common types of graphs are as follows- 

  

1. Cycle Graph- 
  

 A simple graph of ‘n’ vertices (n>=3) and ‘n’ edges forming a cycle of length ‘n’ is called as a 
cycle graph. 

 In a cycle graph, all the vertices are of degree 2. 

  

Chromatic Number 

 If number of vertices in cycle graph is even, then its chromatic number = 2. 

 If number of vertices in cycle graph is odd, then its chromatic number = 3. 
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Examples- 
 

 

2. Planar Graphs- 
 
A planar graph is a graph that can be embedded in the plane, that is it can be drawn on the 
plane in such a way that its edges intersect only at their endpoint. In other words, it can be 
drawn in such a way that no edges cross each other. 
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A Planar Graph is a graph that can be drawn in a plane such that none of its edges cross each 
other. 

 

Chromatic Number 

Chromatic Number of any Planar Graph is less than or equal to 4 

  

Examples- 

+  

 All the above cycle graphs are also planar graphs. 

 Chromatic number of each graph is less than or equal to 4. 

 

 

https://www.gatevidyalay.com/planar-graphs/
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3. Complete Graphs- 

  

 A complete graph is a graph in which every two distinct vertices are joined by exactly one 
edge. 

 In a complete graph, each vertex is connected with every other vertex. 

 So to properly it, as many different colors are needed as there are number of vertices in the 
given graph. 

  

Chromatic Number 

Chromatic Number of any Complete Graph 

= Number of vertices in that Complete Graph 

  

Examples- 
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4. Bipartite Graphs- 
 
 
A bipartite graph is a graph whose vertices can be divided into two disjoint and independent 
sets U and V such that every edge connects a vertex in U to one in V. Vertex sets U and V are 
usually called the parts of the graph. 

  

 A Bipartite Graph consists of two sets of vertices X and Y. 

 The edges only join vertices in X to vertices in Y, not vertices within a set. 

 

Chromatic Number 

Chromatic Number of any Bipartite Graph 

= 2 

  

Example- 

  

 

https://www.gatevidyalay.com/bipartite-graphs/
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5. Trees- 

  

A tree is an undirected graph in which any two vertices are connected by exactly one path, or 
equivalently a connected acyclic undirected graph. 

 

 A Tree is a special type of connected graph in which there are no circuits. 

 Every tree is a bipartite graph. 

 So, chromatic number of a tree with any number of vertices = 2. 

  

Chromatic Number 

Chromatic Number of any tree 

= 2 

  

Examples- 

  

 

 

https://www.gatevidyalay.com/tree-data-structure-tree-terminology/
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CHAPTER-3 

APPLICATIONS OF GRAPH COLORING 

 

1) Making Schedule or Time Table: 

                         Suppose we want to make an exam schedule for a university. We have list 

different subjects and students enrolled in every subject. Many subjects would have common 

students (of same batch, some backlog students, etc). How do we schedule the exam so that no 

two exams with a common student are scheduled at same time? How many minimum time 

slots are needed to schedule all exams? This problem can be represented as a graph where 

every vertex is a subject and an edge between two vertices mean there is a common student. 

So this is a graph coloring problem where minimum number of time slots is equal to the 

chromatic number of the graph.  

 

2) Mobile Radio Frequency Assignment:  

                       When frequencies are assigned to towers, frequencies assigned to all towers at the 

same location must be different. How to assign frequencies with this constraint?  What is the 

minimum number of frequencies needed?  This problem is also an instance of graph coloring 

problem where every tower represents a vertex and an edge between two towers represents 

that they are in range of each other.  

 

3) Register Allocation: 

                  In compiler optimization, register allocation is the process of assigning a large number 

of target program variables onto a small number of CPU registers. This problem is also a graph 

coloring problem. 

 

4) Sudoku: 

                    Sudoku is also a variation of Graph coloring problem where every cell represents a 

vertex. There is an edge between two vertices if they are in same row or same column or same 

block.  
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5)     Map Coloring: 

                     Geographical maps of countries or states where no two adjacent cities cannot be 

assigned same color. Four colors are sufficient to color any map. 

 

 

6)   Bipartite Graphs:  

                   We can check if a graph is bipartite or not by coloring the graph using two colors. If a 

given graph is 2-colorable, then it is Bipartite, otherwise not. See this for more details. 

 

Explanation; 

 

Algorithm: 

              A bipartite graph is possible if it is possible to assign a color to each vertex such that no 
two neighbour vertices are assigned the same color. Only two colors can be used in this 
process. 

 

 

 

Steps: 

1. Assign a color (say red) to the source vertex. 

2. Assign all the neighbours of the above vertex another color (say blue). 

3. Taking one neighbour at a time, assign all the neighbour's neighbours the color red. 

4. Continue in this manner till all the vertices have been assigned a color. 

5. If at any stage, we find a neighbour which has been assigned the same color as that of the 

current vertex, stop the process. The graph cannot be colored using two colors. Thus the graph 

is not bipartite. 
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Example: 
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CONCLUSION 

 

This project aims to provide a solid background in the basic topics of graph coloring. Graph 

coloring problem is to assign colors to certain elements of a graph subject to certain 

constraints. The nature of coloring problem depends on the number of colors but not on what 

they are. 

                    The study of this topic gives excellent introduction to the subject called “Graph 

Coloring”. 

This project includes two important topics such as vertex coloring and edge coloring and came 

to know about different ways and importance of coloring. 

                    Graph coloring enjoys many practical applications as well as theoretical challenges. 

Besides the applications, different limitations can also be set on the graph or on the away a color 

is assigned or even on the color itself. It has been reached popularity with the general public in 

the form of the popular number puzzle Sudoku and it is also use in the making of time 

management which is an important application of coloring. So graph coloring is still a very 

active field of research.  
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INTRODUCTION

This chapter gives an introduction to the theory of normed linear spaces. A skeptical reader may
wonder why this topic in pure mathematics is useful in applied mathematics. The reason is quite
simple: Many problems of applied mathematics can be formulated as a search for a certain
function, such as the function that solves a given differential equation. Usually the function
sought must belong to a definite family of acceptable functions that share some useful properties.
For example, perhaps it must possess two continuous derivatives. The families that arise
naturally in formulating problems are often linear spaces. This means that any linear combination
of functions in the family will be another member of the family. It is common, in addition, that
there is an appropriate means of measuring the “distance” between two functions in the family.
This concept comes into play when the exact solution to a problem is inaccessible, while
approximate solutions can be computed. We often measure how far apart the exact and
approximate solutions are by using a norm. In this process we are led to a normed linear space,
presumably one appropriate to the problem at hand. Some normed linear spaces occur over and
over again in applied mathematics, and these, at least, should be familiar to the practitioner.
Examples are the space of continuous functions on a given domain and the space of functions
whose squares have a finite integral on a given domain.
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PRELIMINARIES

1) LINEAR SPACES

We introduce an algebraic structure on a set and study functions on X which are well behaved𝑋
with respect to this structure. From now onwards , K will denote either R , the set of all real
numbers or C, the set of all complex numbers. For k C , Re k and Im k will denote the  real and∈
imaginary part of k.

A linear space(or a vector space) over K is a non-empty set along with a function𝑋
, called addition and a function : K called scalar multiplication, such+  :  𝑋 × 𝑋 → 𝑋 · × 𝑋 → 𝑋

that for all and K , we have𝑥 ,  𝑦 ,  𝑧 ∈ 𝑋  𝑘 ,  𝑙 ∈

𝑥 + 𝑦 = 𝑦 + 𝑥

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧

∃0∈𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + 0 = 𝑥,

∃ − 𝑥 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + (− 𝑥) = 0 ,

,𝑘 · (𝑥 + 𝑦) = 𝑘 · 𝑥 + 𝑘 · 𝑦

(𝑘 + 𝑙)⋅𝑥 = 𝑘 · 𝑥 + 𝑙 · 𝑥,

(𝑘𝑙)⋅𝑥 = 𝑘 · (𝑙 · 𝑥),

1⋅𝑥 = 𝑥.

We shall write in place of . We shall also adopt the following notations. For𝑘𝑥 𝑘 · 𝑥
K and subsets of ,𝑥, 𝑦 ∈ 𝑋, 𝑘 ∈ 𝐸, 𝐹 𝑋

𝑥 + 𝐹 = {𝑥 + 𝑦: 𝑦 ∈ 𝐹},

`𝐸 + 𝐹 = {𝑥 + 𝑦: 𝑥 ∈ 𝐸, 𝑦 ∈ 𝐹},

𝑘𝐸 = {𝑘𝑥: 𝑥 ∈ 𝐸}.

2) BASIS

A nonempty subset of is said to be a subspace of if whenever and𝐸 𝑋 𝑋 𝑘𝑥 + 𝑙𝑦 ∈ 𝐸 𝑥, 𝑦 ∈ 𝐸
K . If , then the smallest subspace of containing is𝑘, 𝑙 ∈ ∅≠𝐸 ⊂ 𝑋 𝑋 𝐸
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𝑠𝑝𝑎𝑛⁡𝐸 = 𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
: 𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 ,  𝑘

1
, …, 𝑘

𝑛
∈ 𝐾{ }

It is called the span of . If span , we say that spans . A subset of is said to be𝐸 𝐸 = 𝑋 𝐸 𝑋 𝐸 𝑋
linearly independent if for all and K , the equation𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

implies that It is called linearly dependent if it is not𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

1
= ⋯ = 𝑘

𝑛
= 0.

linearly independent, that is, if there exist and K such that𝑥
1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

, where at least one is nonzero.𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

𝑗

A subset E of X is called a Hamel basis or simply basis for X if span of E = X and E is
linearly independent .

3) DIMENSION

If a linear space has a basis consisting of a finite number of elements , then X is called finite𝑋
dimensional and the number of elements in a basis for is called the dimension of , denoted as𝑋 𝑋
dimX . Every basis for a finite dimensional linear space has the same (finite) number of elements
and hence the dimension is well-defined. The space is said to have zero dimension. Note that{0}
it has no basis !

If a linear space contains an infinite linearly independent subset, then it is said to be infinite
dimensional.

4)METRIC SPACE

We introduce a distance structure on a set and study functions on which are well-behaved𝑋 𝑋
with respect to this structure.

A metric on a nonempty set is a function R𝑑 𝑋 𝑑: 𝑋 × 𝑋 →
such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

d(x, y) 0 and d(x , y) = 0 iff x=y≥

d(y , x) = d(x , y)

d(x , y) d(x , z) + d(z , y) .≤

The last condition is known as the triangle inequality. A metric space is a nonempty set along𝑋
with a metric on it.
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5)CONTINUOUS FUNCTIONS

Roughly speaking, a function from a metric space to a metric space is continuous if it sends
‘nearby’ points to ‘nearby’ points. If and are metric spaces with metrics and respectively,𝑋 𝑌 𝑑 𝑒
then a function is said to be continuous at if for every 0 , there is some𝐹: 𝑋 → 𝑌 𝑥

0
∈ 𝑋 ϵ⟩

(possibly depending on and ) such that for all satisfyingδ > 0 ϵ 𝑥
0

𝑒 𝐹(𝑥), 𝐹 𝑥
0( )( ) < ϵ 𝑥 ∈ 𝑋

. Further, is said to be continuous on if it is continuous at every point of It is𝑑 𝑥, 𝑥
0( ) < δ 𝐹 𝑋 𝑋.

easy to see that is continuous on if and only if the set F -1(E) is open in X whenever the set E𝐹 𝑋
is open inY. Also , this happens iff F(xn) F(x) in Y whenever xn x in X.→ →

6) UNIFORM CONTINUITY

We note that a continuous function is, in fact, uniformly𝐹: 𝑇 → 𝑆
continuous, that is, for every , there exists someϵ > 0 δ > 0

such that whenever . This can be seen as follows. Let . By𝑒 𝐹(𝑡), 𝐹(𝑢( )) < ϵ 𝑑 𝑡, 𝑢( ) < δ 𝑡 ∈ 𝑇

the continuity of at , there is some , such that whenever𝐹 𝑡 ∈ 𝑇 δ
𝑡

𝑒 𝐹(𝑡), 𝐹 𝑢( )( ) < ε
2

.𝑑 𝑡, 𝑢( ) < δ
𝑡

7) FIELD

A ring is a set R together with two binary operations + and ( which we call addition and·
multiplication ) such that the following axioms are satisfied .

➢ R is an abelian group with respect to addition
➢ Multiplication is associative
➢ the left distributive law a(b + c) = (a b) + (a c) and the right distributive∀𝑎 , 𝑏, 𝑐 ∈ 𝑅 · ·

law (a + b)c = (a c) + (b c) , hold .· ·

A field is a commutative division ring
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CHAPTER 1

NORMED LINEAR SPACE

Let X be a linear space over K .  A norm on X is the function || || from to R such that𝑋 ∀
x,y X and k K ,∈ ∈

and  || || = 0  if and only if x = 0  ,||𝑥||≥0 𝑥

||x + y|| ||x|| + ||y|| ,≤

||kx|| =|k| ||x|| .

A norm is the formalization and generalization to real vector spaces of the intuitive
notion of “ length” in the real world .

A normed space is a linear space with norm on it .

For x and y in X , let
d(x,y) = ||x - y||

Then d is a metric on X so that (X,d) is a metric space , thus every normed space is a metric
space

➢ Every normed linear space is a metric space . But converse may not be true .

Example :

d(x,y) = , x , y X
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦| ∀ ∈

||x - y|| =⇒
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦|

||z||  = , z = x - y X⇒  
|𝑧|

1 + |𝑧| ∈
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|| z||  =α
|α𝑧|

1 +|α𝑧|

=
|α| |𝑧|

1 + |α| |𝑧|

= | |α
|𝑧|

1 + |α| |𝑧|( )
| | ||z|| .≠ α

➢ Result

Let X be a normed linear space . Then ,

| ||x|| - ||y|| | ||x - y|| , x , y X≤ ∀ ∈

Proof :

||x|| = || ( x - y ) + y|| ||x - y|| + ||y||≤

||x|| - ||y|| ||x - y|| (1)⇒ ≤ →

x y↔

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y|| (2)⇒ ≤  →

From (1) and (2)

|||x|| - ||y||| ||x - y||≤  

➢ Norm is a continuous function

Let xn x , as n→ → ∞
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xn - x 0 as n ∞⇒ → →

||xn - x|| 0 as n ∞⇒ → →

| ||xn|| - ||x|| | ||xn - x|| 0 as n ∞≤ → →

||xn|| - ||x|| 0 , as n ∞⇒ → →

||x|| is continuous⇒

➢ Norm is a uniformly continuous function

We have , || || :X R . Let x,y X and > 0→ ∈  ε

Then ||x|| = ||x - y + y ||

||x - y|| + ||y||                               ≤

||x|| - ||y|| ||x - y|| )        ⇒ ≤ → (1

Interchanging x and y ,

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y||⇒ ≤

||x|| - ||y|| - ||x - y|| 2)⇒  ≥ → (

Combining (1) and (2)

- ||x - y|| ||x|| - ||y|| ||x - y||≤ ≤

That is ,

| ||x ||- ||y|| | ||x - y||≤

Take , then whenever ||x - y|| < , | ||x|| -|| y|| |<δ = ε δ  ε
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Therefore || || is a uniformly continuous function .

➢ Continuity of addition and scalar multiplication

To show that + : X X X and : K X X are continuous functions.× → · × →

Let (x,y) X X . To show that + is continuous at (x ,y) , that is ,  to show∈  ×
that for each (x,y) X X if xn x and yn y in X , then∈ × → →

+(xn , yn) +(x , y) ;→

That is ,
xn + yn x + y .→

Consider
||( xn + yn) - (x + y )|| = ||xn - x + yn - y||

||xn - x|| + ||yn - y||≤

Given xn x and yn y , for each , N1→ → ϵ > 0 ∃ ∋

||xn - x|| < n N1 ,   and N2
ε
2 ∀ ≥ ∃ ∋

||yn - y|| < n N2
ε
2 ∀ ≥

\

Take N = max { N1, N2}

Then ||xn - x|| < and ||yn - y|| < n Nε
2

ε
2 ∀ ≥

Therefore ||(xn + yn) - (x + y)|| + = n N≤ ε
2

ε
2 ε ∀ ≥

That is , xn + yn x + y→

Now to show that : K X X is continuous· × →

Let (k , x) K X∈ ×

13



To show that if kn k and xn x , then knxn kx→ → →

Since kn k   , > 0 N1 |kn - k| < n N1→ ∀ ε ∃ ∋  ε
2

∀ ≥

Since xn x   , > 0 N2 ||xn - x|| < n N2→ ∀ ε ∃ ∋  
ε
2 ∀ ≥

Consider ||knxn - kx|| = ||knxn - kx + xnk - xnk ||

= ||xn (kn - k) + k(xn - x)||

||xn(kn - k)|| + ||k(xn - x)||≤

=  ||xn|| |kn- k| +  |k| ||xn - x||

||xn|| + |k|≤ ε
2

ε
2

∴   knxn kx→

➢ Examples of normed space

1)   Spaces Kn (K = R or C)

For n = 1 ,  the absolute value of function | | is a norm on K , since k K∀ ∈

We have ,

||k|| = ||k || = |k| ||1|| , by definition .· 1

But ||1|| is a positive  scalar .

∴ ||k|| is a positive scalar multiple of the absolute value function .

∴  any norm on K is a positive scalar multiple of the absolute value
function

For n > 1 , let p be a real number≥ 1
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Kn = { ( x(1) , x(2) , . . . , x(n) ) : x(i) K , i = 1 , 2 , . . . , n }∈

For x Kn , that is , x = ( x(1) , x(2) , . . . , x(n) ) ,  define∈

||𝑥||
𝑝

= (|𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝

Then || ||p is a norm on Kn

When p = 1 ,

Then , ||x||1 = |x(1)| + |x(2)| + . . . + |x(n)|

Since |x(i)| 0 i = 1 , 2 , . . . , n   , ||x||1 0≥ ∀ ≥

And ||x||1 = 0 |x(1)| + . . .  +|x(n)| = 0⇔

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0                          ⇔

Now ||kx||1 =  |kx(1)| + |kx(2)| + . . . + |kx(n)|

= |k| |x(1)| + . . . + |k| |x(n)|

= |k| ( |x(1)| + . . . + |x(n)| )

= |k| ||x||1

||x + y||1 = |(x + y)(1)| + . . . + |(x + y)(n)|

= |x(1) + y(1)| + . . . + |x(n) + y(n)|

|x(1)| + |y(1)| + . . . + |x(n)| + |y(n)|≤

= |x(1)| + . . . + |x(n)| + |y(1)| + . . . + |y(n)|

= ||x||1 + ||y||1
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Consider 1<p<∞

Now  , ||𝑥||
𝑝

= ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

Since x(i) 0 i , we have ||x||p 0| |𝑝 ≥ ∀ ≥

And ||𝑥||
𝑝

= 0⇔( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝 = 0

= 0 i⇔ |𝑥(𝑖)|𝑝 ∀

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0 .                          ⇔
Now

||𝑘𝑥||
𝑝

= ( |𝑘𝑥(1)|𝑝 +.  .  .  + |𝑘𝑥(𝑛)|𝑝)1/𝑝

= ( |𝑘|𝑝 |𝑥(1)|𝑝 +.  .  .  + |𝑘|𝑝 |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ||𝑥||
𝑝 .

              ||𝑥 + 𝑦||
𝑝

= ( |𝑥(1) + 𝑦(1)|𝑝 +.  .  .  + |𝑥(𝑛) + 𝑦(𝑛)|𝑝 )1/𝑝

We have by Minkowski’s inequality ,

+
𝑖=1

𝑛

∑ |𝑥(𝑖) + 𝑦(𝑖)|𝑝( )1/𝑝

≤
𝑖=1

𝑛

∑ |𝑥(𝑖)|𝑝( )
1/𝑝

𝑖=1

𝑛

∑ |𝑦(𝑖)|𝑝( )1/𝑝

Then
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||𝑥 + 𝑦||
𝑝
 ≤  |𝑥(1)|𝑝 +.  .  . + |𝑥(𝑛)|𝑝( )

1/𝑝
+  |𝑦(1)|𝑝 +.  .  .  + |𝑦(𝑛)|𝑝( )

1/𝑝

= ||𝑥||
𝑝

+ ||𝑦||
𝑝

Then , for 1 p< , is a norm on Kn≤ ∞ || ||
𝑝

When p = , define∞ ||𝑥||
∞

= 𝑚𝑎𝑥 { |𝑥(1)| , |𝑥(2)| ,.  .  .  , |𝑥(𝑛)| }

Then it is a norm on Kn

0 since each values |x(i)| 0||𝑥||
𝑝 

≥ ≥

So that

max {|x(i)| , i=1, . . . , n} 0≥

= 0||𝑥||
∞

= 0 ⇔𝑚𝑎𝑥 { |𝑥(𝑖)| : 𝑖 = 1,.  .  .  , 𝑛 }

|x(i)| = 0 i⇔ ∀

x(i) = 0 , i⇔ ∀

x = 0⇔

||𝑘𝑥||
∞

 =  𝑚𝑎𝑥 { |𝑘𝑥(1)| ,.  .  .  , |𝑘𝑥(𝑛)| }

= max { |k| |x(1)| , . . . , |k| |x(n)|}

= |k| max {|x(1)| , . . . , |x(n)|}

= |k| ||x||
∞

||x + y| = max { |x(1) + y(1)| , . . . , |x(n) + y(n)| }|
∞

max { |x(1)| + |y(1)| , . . . , |x(n)| + |y(n)| }≤

17



max { |x(1)| , . . . , |x(n)| } + max { |y(1)| , . . . , |y(n)| }≤

= ||x| + ||y||
∞

|
∞

2) Sequence space

Let 1 p < , = { x = ( x(1) , x(2) , . . . ) ;  x(i) K and x(j) < } , that is , is the≤ ∞ 𝑙𝑝 ∈
𝑗=1

∞

∑ | |𝑝 ∞ 𝑙𝑝

space of p-summable scalar sequences in K . For x = (x(1) , x(2) , . . . ) ,∈ 𝑙𝑝

let ||x||p = ( |x(1)|p + |x(2)|p + . . . )1/p . Then it is a norm on lp.

That is , || ||p is a function from lp to R .

If p = 1 , then l1 is a linear space and ||x||1 = ( |x(1)| + |x(2)| + . . . ) is a norm on l1

Let p = . Then is the linear space of all bounded scalar sequences . And ,∞ 𝑙∞

||x = sup { |x(j)| : j = 1, 2, 3, . . . }||
∞

Then is a norm on|| ||
∞

𝑙∞
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   CHAPTER 2

THEOREMS ON NORMED SPACES

a) Let  Y  be a subspace of a normed space X , then Y and its closure  are normed spaces with𝑌
the induced norm.

b) Let Y be  a closed subspace of a normed space X , for x +Y in the quotient space X/Y, let
|||x +Y||| = inf { ||x+y|| : y Y} . Then |||   ||| is a norm on X/Y , called the quotient norm.∈

        A sequence (xn + Y) converges to x + Y in X/Y iff there is a sequence (yn) in Y , (xn+ yn)
converges to x in X.

c) Let || ||pbe a norm on the linear space Xp , j = 1,2,…. . Fix p such that 1 p≤ ≤∞

For x = (x(1) , x(2) , … , x(m))   that  is the product space X =X1× X2 × …× Xm ,

  Let , if 1  p <||𝑥||
𝑝
 =   ||𝑥(1)||

1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

≤ ∞

 ||x||p = max { ||x(1)||1 , … , ||x(m)||m }   ,   if p = .∞

 Then ||   ||p is a norm on X.

A sequence (xn) converges to x in  X (xn(j)) converges to x(j) in Xj      j=1,2,…,m.  ⇔ ∀

Proof:

a) Since X is a normed space, there is a norm on X to Y . Since  Y is a subspace of X,   

||  ||y: Y   R is a function. To show that ||  ||y is a norm on Y.       →

For y  Y ,    || y||Y  = ||y|| , then∈

||y||Y   ( ∵||y||  0 )    and     ||y||Y = 0 y = 0≥ 0  ≥ ⇔

||ky||Y = ||ky|| = |k| ||y|| = |k| ||y||y .

Let y1 , y2  Y.  Then ,∈

||𝑦
1

+ 𝑦
2
||

𝑦
= ||𝑦

1
+ 𝑦

2
|| ≤ ||𝑦

1
|| + ||𝑦

2
|| = ||𝑦

1
||

𝑦
+ ||𝑦

2
||

𝑦

Now the continuity of addition and scalar multiplication shows that  is a subspace of X, since if𝑌
xn  x and yn y ,   xn , yn   , then→ → ∈ 𝑌

xn + yn  x + y (by continuity of addition)    and→
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kxn  kx (by continuity of scalar Xn) .→

Since   is closed , x + y and kx .  Therefore   X.𝑌 ∈ 𝑌 ∈ 𝑌 𝑌 ≤

  norm on X induces a norm on Y and∴ 𝑌

b) X/Y , the quotient space equals X/Y={ x + Y : x X }.∈

|||x + y||| = inf { ||x + y|| : y Y }∈

Claim: |||  ||| is a norm on X/Y , called quotient norm

• Let x X ,∈

|||x + Y||| = inf { ||x + y|| : y Y }   0.∈ ≥

|||x + Y|||  0 .∴ ≥

   If |||x + y||| = 0 ( 0 in X/Y is Y) , then there is a sequence (yn) in Y    ∋

 ||x + yn ||  0→

                           ⇒                x + yn  0→

                           ⇒                 yn  -x→

Since yn Y and Y is closed∈

-x Y   ⇔ x Y ( Y is a subspace)∈ ∈ ∵

                    ⇔x + Y = Y , zero in X/Y.

• For k K ,∈

|||k(x + Y)||| = |||kx + Y|||

                                          = inf { ||k(x + y)|| : y Y}∈

                                          = inf { |k| ||x + y|| : y Y}∈

                                          = |k| inf { ||x + y|| : y Y}∈

= |k| |||x + Y||| .

• Let x1 , x2 X . Then∈

               |||x1 + Y||| = inf { ||x1 + y|| : y Y } . Then y1  Y∈ ∃ ∈ ∋

               |||x1 + Y||| +   >  ||x1 + y1|| ,  and
ε
2

20



                  |||x2 + Y||| = inf { ||x2 + y|| : y Y}  , Then   y2 Y  ∈ ∃ ∈ ∋

                                |||x2 + Y||| +   >  ||x2 + y2|| .
ε
2

||x1 + y1 + x2 + y2 ||     ||x1 + y1|| + ||x2 + y2||≤

  |||x1 + Y||| + + |||x2 + Y||| +≤ ε
2

ε
2

Let y = y1 + y2 Y . Then ,∈

                    ||(x1+x2) + y||   |||x1 + Y||| + |||x2 + Y||| + ℇ    —(1)≤

Now ,  |||(x1 + Y) + (x2 + Y)||| = |||x1 + x2 + Y|||

                                                =inf { ||x1 + x2 + y|| : y Y }∈

                                             < ||x1 + x2 + y||

                                           |||x1 + Y||| + |||x2 + Y||| + ℇ          (by (1) )≤

since ℇ is arbitrary , we have  

|||(x1 + Y) + (x2 + Y)|||   |||x1 + Y||| + |||x2 + Y|||≤

∴ |||   |||  is a norm on X/Y.

Let (xn + Y) be a sequence in X/Y . Assume that (yn) is a sequence in Y   (xn + yn) converges∋
to x in X.

That is ,  (xn - x + yn) converges to 0 .      —(1)

Claim: (xn + Y) converges to x + Y.

  Consider

|||xn + Y -  (x+Y)||| = |||(xn - x) + Y|||

                                                       = inf { ||xn - x + yn|| : y Y }∈

                                                        ||xn - x + yn||      yn Y .≤ ∀ ∈

Then by (1) , xn + Y converges to x + Y in X/Y.

   Conversely assume that the sequence (xn + Y)  x + Y in X/Y.→

   Consider |||xn + Y - (x + Y)||| = |||xn - x + Y|||

                                                    = inf { ||xn -x + y|| : y Y }∈

Then we can choose yn Y ∈ ∋
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                       ||xn - x + yn|| <  |||(xn - x) + Y||| + ,  n=1,2,3,….1
𝑛

Since xn+Y  x+Y , we get→

             (xn - x + yn) converges to zero as n →∞

That is , (xn + yn) converges to x in X as n →∞

c) Consider   1  p < ≤ ∞

          Given that

||𝑥||
𝑝 

= (||𝑥(1)||
1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝 )1/𝑝

  Clearly , ||x||p  0 .  ≥

  Since each ||𝑥(𝑖)||
𝑖
𝑝 ≥ 0 .

              ||x||p = 0  ⇔   = 0   ∀ j = 1, . . . ,m|𝑥(𝑗)|
𝑗
𝑝

                                         ⇔  x(j) = 0           ∀ j.

                                         ⇔  x = (x(1), . . . ,x(m)) = 0

                    ||kx||p =                            ||𝑘𝑥(1)||
1
𝑝 +.  .  . + ||𝑘𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

   =  |𝑘|𝑝||𝑥(1)||
1
𝑝 +.  .  . + |𝑘|𝑝||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                            = |𝑘|  ||𝑥(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

, k K and x X= |𝑘| ||𝑥||
𝑝

∈ ∈

Now, ||𝑥 + 𝑦||
𝑝

=  ||𝑥(1) + 𝑦(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚) + 𝑦(𝑚)||

𝑚
𝑝( )1/𝑝

  (by Minkowski’s inequality)

                                 ≤

 ||𝑥(1)||
1

+ ||𝑦(1)||
1( )𝑝 +.  .  .  +  ||𝑥(𝑚)||

𝑚
+ ||𝑦(𝑚)||

𝑚( )𝑝( )1/𝑝

                                 +          (Minkowski’s inequality )≤
𝑗=1

𝑚

∑ ||𝑥(𝑗)||
𝑗
𝑝( )1/𝑝

𝑗=1

𝑚

∑ ||𝑦(𝑗)||
𝑗
𝑝( )1/𝑝
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                                =  ||𝑥(1)||
1
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                                = ||x||p + ||y||p

        Now suppose  p =      ∞

  ||x||∞  = max { ||x(1)||1 , . . . , ||x(m)|| m }

||x||∞  0   Since ||x(j)||   0 ,       ∀ j≥ ≥

||x||∞  = 0          ⇔  ||x(m)|| = 0      ∀ m

                                       ⇔  x(m) = 0      ∀ m

                                       ⇔ x = 0

||kx||∞  = max { ||kx(1)||1 , . . . ,  ||kx(m)||m }

               = |k| max { ||x(1)||1 , . . . , ||x(m)||m }       

   =  |k| ||x||∞

||x + y||∞ = max { ||x(1) + y(1)||1, . . . , ||x(m) + y(m)||m }

                  max { ||x(1)||1 + ||y(1)||1 , . . . , ||x(m)||m + ||y(m)||m }≤

                                =  max { ||x(1)||1 , . . . ,  ||x(m)||m }   + max { ||y(1)||1 , . . . , ||y(m)||m }

                                = ||x||∞ + ||y||∞

We now consider  ,  

||𝑥
𝑛

− 𝑥(1)||
𝑝

=  ||𝑥
𝑛
(1) − 𝑥(1( )||

1
𝑝 +.  .  . + ||𝑥

𝑛
(𝑚) − 𝑥(𝑚)||

𝑚
𝑝 )

1/𝑝

Then  

xn  x in X      ⇔  ||xn - x ||p   0 → →

                                        ⇔  ||xn(j) - x(j)  0||
𝑗
𝑝 →

                                        ⇔  xn(j) - x(j)  → 0

                                        ⇔  xn(j) → x(j) in X j .∀
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RIESZ  LEMMA

Let be a normed space . be a closed subspace of and . Let be a real number𝑋 𝑌 𝑋 𝑋 ≠ 𝑌 𝑟
such that . Then there exist some xr X such that ||xr||  = 1 and0 < 𝑟 < 1 ∈

r<dist ( xr , Y ) 1≤

Proof :

We have ,

dist (x , Y) = inf { d(x , y) : y Y}∈

= inf { ||x - y|| : y Y}∈

Since Y X , consider x X x Y.≠ ∈ ∋ ∉

If dist(x , Y) = 0 , then ||x - y|| = 0 x = Y ( ∵ Y is closed )⇒ ∈𝑌

Therefore ,

dist (x , Y) 0≠

That is ,

dist (x , Y) > 0

Since 0 < r < 1  , > 1
1
𝑟

> dist (x , Y)⇒
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟

That is  , is not a lower bound of { ||x - y|| : y Y }
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟 ∈

Then y0 Y ||x - y0|| < (1)∃ ∈ ∋
𝑑𝑖𝑠𝑡(𝑥 , 𝑌)

𝑟    →

Let xr = . Then xr X
𝑥 −  𝑦

0

||𝑥 − 𝑦
0
|| ∈

( ∵y0 Y , x Y x - y0 X and ||x - y0|| 0 )∈ ∉ ⇒ ∈ ≠
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Then ||xr|| =|| || = = 1
𝑥 − 𝑦

0

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

Now to prove r < dist( ) 1𝑥
𝑟
, 𝑌 ≤

We have dist(xr , Y) = inf { ||xr - y|| : y Y }∈

||xr - y|| y Y≤ ∀ ∈

In particular, 0 , so that dist(xr , Y) ||xr - 0|| = 1∈ 𝑌 ≤

That is ,

dist (xr , Y) 1≤

Now ,

dist (xr , Y) = dist ( , Y )
𝑥 − 𝑦

0

||𝑥−𝑦
0
||

= dist ( x - y0 , Y)
1

||𝑥−𝑦
0
||

= inf { ||x - y0 - y|| : y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= inf {||x - (y0+ y)|| : y0 + y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= dist (x , Y)
1

||𝑥−𝑦
0
||

> dist (x , Y)    by (1)
𝑟

𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

dist (xr , Y) > r⇒

That is ,

r < dist (xr , Y) 1≤
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CONCLUSION

This project discusses the concept of normed linear space that is fundamental to
functional analysis . A normed linear space is a vector space over a real or complex
numbers ,on which the norm is defined . A norm is a formalization and generalization to
real vector spaces of the intuitive notion of “length” in real world

In this project , the concept of a norm on a linear space is introduced and thus
illustrated . It mostly includes the properties of normed linear spaces and different proofs
related to the topic.
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INTODUCTION 

In linear algebra, an inner product space is a vector space with an additional structure 

called an inner product. This additional structure associates 

each pair of vectors in the space with a scalar quantity known as the inner product of the 

vectors. Inner products allow the rigorous introduction of intuitive geometrical notions 

such as the length of a vector or the angle between two vectors. They also provide the 

means of defining orthogonality between vectors (zero inner product). Inner product 

spaces generalize Euclidean spaces (in which the inner product is the dot product, also 

known as the scalar product) to vector spaces of any (possibly infinite) dimension and are 

studied in functional analysis. The first usage of the concept of a vector space with an 

inner product is due to Peano, in 1898. 

An inner product naturally induces an associated norm, thus an inner product space is also 

a normed vector space. A complete space with an inner product is called a Hilbert space. 

An (incomplete) space with an inner product is called a pre-Hilbert space. 
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PRELIMINARIES 

         LINEAR SPACES 

Definition 1:  A linear (vector) space X  over a field F is a set of elements 

together with a function, called addition, from X × X into X and a function 

called scalar multiplication, from F × X into X which satisfy the following 

conditions for all x, y, z ∈ X and α, β ∈ F; 

i. (x + y) + z = x + (y + z) 

ii. x + y = y + x 

iii. There is an element 0 in X such that x + 0 = x for all x ∈ X. 

iv. For each x ∈ X there is an element −x ∈ X such that x + (−x) = 0. 

v. (x + y) = αx + αy 

vi. (α + β)x = αx + βx 

vii. α(βx) = (αβ)x 

viii. 1 · x = x. 

Properties i to iv imply that X is an abelian group under addition and v to vi 

relate the operation of scalar multiplication to addition X and to addition and 

multiplication in F. 

Examples: 

         (a)  Vn(R). The vectors are n-tuples of real numbers and the scalars are real       
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                numbers with addition and scalar multiplication defined by 

 

                  
1 1 1 1,···, ,···,( ) ( ( )) ,···,n n n n       + = + +                                      (1)             

                                    
1 1( ) (, )···, ,···,n n    =                     (2) 

         Vn(R) is a linear space over R. Similarly, the set of all n-tuples of complex          

            numbers with the above definition of addition and multiplication is a linear    

         space over C and is denoted as Vn(C). 

         (b) The set of all functions from a nonempty set X into a field F with addition and         

                 scalar multiplication defined by 

[f + g](t) = f (t) + g(t) and [αf ](t) = αf (t); f, g ∈ X, t ∈ T     (3)      

is a linear space. 

Let T = N the set of all positive integers and X is the set of all sequences of 

elements F with addition and scalar multiplication defined by 

 

                              ( ) ( )n n n n   + = +                                       (4) 

                                 ( ) ( )n n  =                                                                         (5) 

denoted as V∞(F), form a linear space. 
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METRIC SPACES 

Remember    the        distance        function   in        the  Euclidean  space  Rn. 

                         Let         x, y, z ∈ Rn, then 

(1) |x − y| ≥ 0; |x − y| = 0 if and only if x = y ;  

(2) |x − y| = |y − x|; 

(3) |x − y| ≤ |x − z| + z − y|. 

Definition 2: A metric or distance function on a set X is a real valued function 

d defined on X × X which has the following properties: for all x, y, z ∈ X. 

(1) d(x, y) ≥ 0; d(x, y) = 0 if and only if x = y;  

(2) d(x, y) = d(y, x); 

(3)  d(x, y) ≤ d(x, z) + d(z, y) 

A metric space (X, d) is a nonempty set X and a metric d defined on X. 

Examples: In addition to the Euclidean spaces let us have the following examples. 

Here all functions are assumed to be continuous. Let pL  denotes a set of complex 

valued functions in Rn such that 
p

f   is integrable.  Let us recall some results 

concerning such functions. 

Höder’s Inequality: If p > 1, 1/q = 1 − 1/p 

                                            
1/ 1/| | [ | | ] [ | | ]p p q qfg f g   . 

Minkowski’s Inequality: If p ≥ 1, 

                                       1/ 1/ 1/p[ | | ] [ | | ] [ | | ]p p p p pf g f g+  +    
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If xk and yk for k = 1, … , m are complex numbers, let f (t) = |xk| and g(t) = 

|yk| for t ∈ [k, k + 1] and f (t) = 0 = g(t) for t∈ [1, m + 1]. Then we obtain the 

summation form of the above inequalities from the integral form 

Hölder’s Inequality 

                         

1/ 1/

1 1 1

p q
p qm m m

k k k k

k k k

x y x y
= = =

   
    

      
    

Minkowski’s Inequality: 

                      

1/ 1/ 1/p

1 1 1

p p
p p pm m m

k k k k

k k k

x y x y
= = =

     
+  +     

          
  

         NORMED LINEAR SPACES 

Definition 3. A norm on X is a real valued function, whose value at x is denoted 

by ||x||, satisfying the following conditions for all x, y ∈ X and α ∈ F; 

(1) ||x|| > 0 if x ≠ 0  

(2) ||αx|| = |α|||x|| 

(3) ||x + y|| ≤ ||x|| + ||y||. 

A linear space X with a norm defined on it is called a normed linear space.  

Example: 
pl space. On the linear space Vn(F), define 

                                        
1/

1

[ | | ]
n

p p

i

k

x 
=

=   

         where p ≥ 1 is any real number and x =
1,··( )·, n  . This defines a norm (called p-                         

         norm) on Vn(F). This space is called 
pl space .  
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CHAPTER 1 

INNER PRODUCT SPACES 

INNER PRODUCTS 

Let 𝐹 be the field of real numbers or the field of complex numbers, and V a vector space over 

F an inner product on V is a function which assigns to each ordered’ pair of vectors 𝛼, 𝛽 in V 

a scalar (𝛼|𝛽) in 𝐹 in such a way that for all 𝛼, 𝛽, γ  in V and all scalars c. 

(a) (𝛼 + 𝛽|𝛾) = (𝛼|𝛾) + (𝛽|𝛾) ; 

(b) (c𝛼|𝛽) = 𝑐(𝛼|𝛽) ; 

(c) (𝛽|𝛼) = (𝛼|𝛽̅̅ ̅̅ ̅), the bar denoting complex conjugation 

(d) (𝛼|𝛼) > 0 if 𝛼 ≠ 0 

It should be observed that conditions (a), (b) and (c) implies that 

(𝑒) = (𝛼 ∣ 𝑐𝛽 + 𝛾) = (𝑐̅(𝛼|𝛽) + (𝛼|𝛾) 

One other point should be made. When 𝐹 is the field 𝑅 of real nunbers. The complex conjugates 

appearing in (c) and (e) are superflom. However, in the complex case they are necessary for 

the consistency of the conditions. Without these complex conjugates we would have the 

contradiction 

(𝛼|𝛼) > 0  and  (𝑖𝛼 ∣ 𝑖𝛼) = −1(𝛼|𝛼) 

Example 1: 

On F𝑛 there is an inner product which we call the standard inner product. It is defined on 𝛼 =

(𝑥1, ⋯ 𝑥𝑛) and 𝛽 = (𝑦1, … , 𝑦𝑛), by 
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(𝛼|𝛽) = ∑  

𝑖

𝑥𝑖𝑦𝑖̅ 

When F is R this may be also written as 

(𝛼|𝛽) = ∑  

𝑖

𝑥𝑖𝑦𝑖 

In the real case, the standard inner product is often called the dot or scalar product and denoted 

by 𝛼 ⋅ 𝛽. 

INNER PRODUCTS SPACES 

An inner product space is a real or complex vector space together with a specified inner product 

on that space. 

• A finite-dimensional real inner product space is often called a Euclidean spare. A 

complex inner product spare often referred to as a unitary spare. 

• Every inner product space is a normed linear space and every normed space is a metric 

space. Hence , every inner product space is a metric space. 

Theorem 

If V is an inner product space, then for any vector’s 𝛼, 𝛽 in 𝑉 and any scalar c 

(1) ||𝑐𝛼|| = |𝑐|||𝛼|| ; 

(ii) ||𝛼|| > 0 for 𝛼 ≠ 0 

(iii) |(𝛼 ∣ 𝛽)| ⩽ ||𝛼|| ||𝛽||  

(iv) ∥ 𝛼 + 𝛽|| ⩽∥ 𝛼 ∥ +∥ 𝛽|| 

Proof: 

Statements (i) and (ii) follow almost immediately form the various definitions 

involved. The inequality in (iii) is clearly valid when 𝛼 = 0.  if 𝛼 ≠ 0, put 

𝛾 = 𝛽 −
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 
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      Then,                                     (𝛾 ∣ 𝛼) = 0 and 

                                           0 ⩽∥ 𝛾 ∥2= (𝛽 −
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 𝛽 −

(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼⁄ ) 

                                                             = (𝛽|𝛽) −
(𝛽|𝛼)(𝛼|𝛽)

∥ 𝛼 ∥2
 

            =∥ 𝛽 ∥2−
|(𝛼|𝛽)|2

∥ 𝛼 ∥2
 

Hence, 

|(𝛼 ∣ 𝛽)|2 ⩽∥ 𝛼 ∥2∥ 𝛽 ∥2 

Now using (c) we find that 

                           ∥ 𝛼 + 𝛽 ∥2 = ∥ 𝛼 ∥2+ (𝛼 ∣ 𝛽) + (𝛽 ∣ 𝛼)+∥ 𝛽 ∥2 

                                  

=∥ 𝛼 ∥2+ 2Re (𝛼 ∣ 𝛽)+∥ 𝛽 ∥2

⩽∥ 𝛼 ∥2+ 2 ∥ 𝛼 ∥∥ 𝛽 ∥ +∥ 𝛽 ∥2

= (∥ 𝛼 ∥ +∥ 𝛽 ∥)2

 

Thus,  

                                          ∥ 𝛼 + 𝛽 ∥ ⩽ ∥ 𝛼 ∥ +∥ 𝛽 ∥ 

the inequality (iii) is called the Cauchy -Schwarz inequality. It has a wide variety of application 

the proof shows that if 𝛼is non-zero then 

     (( 𝛼 ∣∣ 𝛽 )) <∥ 𝛼 ∥∥ 𝛽 ∥, unless 

𝛽 =
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 

Then equality occurs in (iii) if and only if 𝛼 and 𝛽 are linearly independent. 
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CHAPTER 2 

ORTHOGONAL SETS 

 Definition 

             Let α and β be the vectors in an inner product space V. Then α is orthogonal to β   if   

(α | β) = 0. We simply say that and are orthogonal. 

Definition 

 If  S is a set of vectors in V, S is called an orthogonal set provided all set pairs of 

distinct vectors in S are orthogonal. 

Definition 

 An orthogonal set is an orthogonal set S with the additional property that  ∥ 𝛼 ∥= 1 for 

every 𝛼 in S.  

• The zero vectors are orthogonal to every vector in V and is the only vector with this 

property. 

• It is an appropriate to think of an orthonormal set as a set of mutually perpendicular 

vectors each having length l.  

Example: the vector (x , y) is 𝑅2 is orthogonal to (−y , x) with respect to the standard inner 

product, for, 

 ((x , y)|(−y , x)) = −xy +  yx = 0 

• The standard basis of either 𝑅𝑛 or 𝐶𝑛 is an orthonormal set with respect to the standard 

inner product. 
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Theorem : An orthogonal set of nonzero vectors is linearly independent. 

Proof: 

Let S be a finite or infinite orthogonal set of nonzero vectors in a given inner product space 

suppose  𝛼1,𝛼2, … 𝛼𝑛 are distinct vectors in S and that β=𝑐1𝛼1+ + ⋯ 𝑐𝑛𝛼𝑛       

Then  (β|𝛼𝑘)=( 𝑐1𝛼1+ + ⋯ 𝑐𝑛𝛼𝑛|𝛼𝑘)   

                     = 𝑐1(𝛼1|𝛼𝑘) + 𝑐2( 𝛼2|𝛼𝑘)+…+𝑐𝑛(𝛼𝑛|𝛼𝑘)  

                     = 𝑐𝑘(𝛼𝑛|𝛼𝑘) , since (𝛼𝑖 |𝛼𝑗) = 0,if i ≠ j and (𝛼𝑖 |𝛼𝑗) = 1,if i=j 

Hence,  𝑐𝑘= (β |𝛼𝑘) /(𝛼𝑘 , 𝛼𝑘) ) 

             𝑐𝑘=(β |𝛼𝑘)/||𝛼𝑘||2,1≤ k ≤ m 

Thus, when β=0 each 𝑐𝑘=0; so S is a linearly independent set. 

Corollary:  

If {𝛼1,𝛼2, … 𝛼𝑚} is an orthogonal set of nonzero vectors in a finite dimensional inner product 

space V, then m ≤ dimV. 

That is number of mutually orthogonal vectors in V cannot exceed the dimensional V. 

Corollary: 

 If a vector β is linear combination of an orthogonal of nonzero vectors 𝛼1,𝛼2, … 𝛼𝑛, then β is 

the particular linear combination  

 β =∑
(𝛽 |𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘                                                     

Proof : 

        Since β is the linear combination of an orthogonal sequence of nonzero vectors 

𝛼1,𝛼2, … 𝛼𝑛 , we can write     β =𝑐1𝛼1 + ⋯ 𝑐𝑛𝛼𝑛. 

Where      𝑐𝑘 =
(𝛽|𝛼𝑘)

||𝛼𝑘||2
  , 1 ≤ k ≤ m (ref. by previous theorem) 

          Hence, β= ∑
(𝛽|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1  
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Theorem (Gram Schmidt Orthogonalization Process) 

Let V be an inner product space and {𝛽1, … , 𝛽𝑛} be any linearly independent vectors in V. Then 

one may construct orthogonal vectors {𝛼1,𝛼2, … 𝛼𝑛} in V, such that for each k = 1, 2, …n, the 

set {𝛼1,𝛼2, … 𝛼𝑘}is an orthogonal basis for the subspace of V spanned by 𝛽1, … , 𝛽𝑛. 

Proof : 

     The vectors are obtained by means of a construction known as the Gram Schmidt 

orthogonalization process. 

First let 𝛼1 =𝛽1 The other vectors are then given inductively as follows: 

   Suppose 𝛼1,𝛼2, … 𝛼𝑚  (1 ≤ m ≤ n) have been chosen so that for every k  

 {𝛼1,𝛼2, … 𝛼𝑘} (1≤k≤m) 

 is an orthogonal basis for the space of v that is spanned by 𝛽1, … , 𝛽𝑛 

 To construct the next vector 𝛼𝑚+1,  let  

  𝛼𝑚+1,= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 

Then 1 0m +  . For otherwise,  𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘=0, implies, 

 𝛽𝑚+1= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 ,implies, 1m + is a linear combination of 𝛼1,𝛼2, … 𝛼𝑚 and 

hence a linear combination of 1 2, ,..., m   , a contradiction. 

Furthermore, if 1≤j≤m, then, 

                (𝛼𝑚+1| 𝛼𝑗) = ( 𝛽𝑚+1| 𝛼𝑗) -∑
(𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 (𝛼𝑘 |𝛼𝑗)  

   = ( 𝛽𝑚+1| 𝛼𝑚) – ( 𝛽𝑚+1| 𝛼𝑗) , using the orthonormality of {𝛼1,𝛼2, … 𝛼𝑚}. 

Therefore {𝛼1,𝛼2, …,𝛼𝑚+1} is an orthogonal set consisting of m+1 nonzero vectors in the 

subspace spanned by  𝛽1, … , 𝛽𝑚+1. Hence by an earlier Theorem , it is a basis for this subspace 

.Thus the vectors , 𝛼1,𝛼2, … 𝛼𝑛 may be constructed using the formula 
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  𝛼𝑚+1= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 

In particular, when n=3 ,we have  

 𝛼1=𝛽1 

 𝛼2=𝛽2- 
(𝛼2|𝛽2)

||𝛼𝑘||2 α1 

 𝛼3=𝛽3 - 
(𝛽3|𝛼1)

||𝛼1||2 α1 - 
(𝛼2|𝛽3)

||𝛼𝑘||2 𝛼2 

Corollary : 

 Every finite dimensional inner product space has an orthonormal basis. 

Proof : 

 Let V be a finite dimensional inner product space and { 𝛽1, … , 𝛽𝑛} a basis for V. Apply the 

gram Schmidt orthogonalization process  to construct an orthogonal basis , simply replace each  

vector 𝛼𝑛 by  
𝛼𝑘

||𝛼𝑘||
. 

Gram-Schmidt process can be used to test for linear dependence . For suppose  𝛽1, … , 𝛽𝑛 are 

linearly independent vectors in an inner product space; to exclude a trivial case , assume that 

β≠0. Let m be largest integers for which  𝛽1, … , 𝛽𝑚are independent. Then 1≤m˂n. 

 Let 𝛼1, 𝛼2, … 𝛼𝑚 be the vectors obtained by applying the orthogonalization process to 

 𝛽1, … , 𝛽𝑚. Then the vector 𝛼𝑚+1 given by 𝛼𝑚+1= 𝛽𝑚+1–∑
(𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2 𝛼𝑘
𝑚
𝑘=1  is necessarily 0. 

For  𝛼𝑚+1 is in the subspace spanned by 𝛼1, 𝛼2, … 𝛼𝑚 and orthogonal to each of the vectors , 

hence it is 0 as β=∑
(β|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘. Conversely, if 𝛼1, 𝛼2, … 𝛼𝑚 are different from 0 and 𝛼𝑚+1 =0, 

then 𝛽1, … , 𝛽𝑚+1 are linearly independent . 

Definition: 

A best approximation to β  V by vectors in a subspace W  of V is a vector α W  such that 

                                  −  −  for every vector W   . 
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Theorem  

Let W be a subspace of an inner product space V and let  V  . 

    1. The vector  W  is a best approximation to  V  by vectors in W if and 

        only if   − is orthogonal to every vector in W . 

    2. If a best approximation to  V by vectors in W exists, it is unique. 

3. If W is finite-dimensional and {𝛼1,𝛼2, … 𝛼𝑛}  is any orthonormal basis for W ,  

    then the vector   

                                   
( )

2
1

|n
k

k

k k

 
 

=

=    

        is the (unique) best approximation to  by vectors in W. 

Definition: 

Let V be an inner product space and S be any set of vectors in V. The orthogonal complement 

of S is the set S ⊥
 of all vectors in V which are orthogonal to every vector in S. 

That is,  : ( | ) 0,S V S   ⊥ =  =    

Definition: 

      Whenever the vector α in the above theorem exists it is called the orthogonal projection of 

β on W. If every vector in V has an orthogonal projection on W, the mapping that assigns to 

each vector in V its orthogonal projection on W is called the orthogonal projection of V on W. 

Corollary : 

      Let V be an inner product space and W a finite dimensional subspace and E be the 

orthogonal projection of V on W. Then the mapping  

 β →β – Eβ 

is the orthogonal projection of V on W
⊥

. 
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Proof  :  

Let β  V . Then β – Eβ   W ⊥
 , and for any γ  W

⊥
, β – γ = E β+(β – Eβ – γ) 

Since Eβ  W and β – Eβ – γ   W ⊥
 , 

It follows that  

           ||𝛽 –  𝛾||2 = (Eβ+(β – Eβ – γ) ,E β+(β –Eβ – γ)) 

                              = ||𝐸𝛽||2+||𝛽 –  𝐸𝛽 –  𝛾||2 

    ≥ ||𝛽 – (𝛽 –  𝐸𝛽)||2 

 with strict inequality when γ≠ β – Eβ . Therefore, β – Eβ is the best approximation to β by 

vectors in W
⊥

 . 

Theorem  

Let W be a finite dimensional subspace of  an inner product space V and let E be the orthogonal 

projection of V on W. Then E is an idempotent linear transformation of V onto W , W⊥  is the 

null space of E , and  V= W ⨁ W⊥ . 

Proof  

         Let β be an arbitrary vector in V. Then Eβ is the best approximation to β that lies in W . 

In particular, Eβ =β when β is in W . Therefore, E(Eβ) =Eβ for every β in V; that is, E is 

idempotent : 𝐸2= E  . To prove that E is linear transformation, let α and β be any vectors in V 

and c an arbitrary scalar  ,Then by theorem,  

α-Eα and β-Eβ are  each orthogonal to every vector in W . Hence the vector 

c(α-Eα)+(β-Eβ)=(cα +β)-(cEα +Eβ) 

Also belongs to W
⊥

 . Since cEα+ Eβ is a vector in W , it follows from theorem that  

E(cα+ β)= cEα+ Eβ. 

Again let β be any vector in V. Then Eβ is the unique vector in W such that β-Eβ is in W
⊥

.  

Thus Eβ=0 when β is in W
⊥

.  

Conversely, β is in W
⊥

 when Eβ=0. Thus W
⊥

is the null space of E.  
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The equation , 

                              β = E β+β – Eβ  

shows that V = W W ⊥+ ; moreover {0}W W ⊥ = ; for if α is a vector in W W ⊥ ,then 

( )|  =0.  Therefore, α=0 and V is the direct sum of W and W
⊥

. 

Corollary  : 

Under the conditions of theorem, I E−  is the orthogonal projection of V on W
⊥

. 

It is an independent linear transformation of V onto W
⊥

with null space W . 

Proof : 

We have seen that the mapping β →β- E β   is the orthogonal projection of  V on W ⊥
. 

Since E is a linear transformation , this projection W ⊥
is the linear transformation  I E− from 

its geometric properties one sees that I E− is an idempotent .Transformation of V onto W .  

This also follows from the computation ( I E− )( I E− )= I E− - E +𝐸2 

  = I E−  

Moreover , ( I E− )β =0 If and only if   β = Eβ , and this is the case if and only if β is in W  . 

Therefore W is the null space of I E− . 
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INTRODUCTION 

 

 In recent years, Graph Theory has established itself as an important 

mathematical tool in a wide variety of subjects, ranging from Operational 

Research and Chemistry to Genetics and Linguistics, and from Electrical 

Engineering and Geography to Sociology and Architecture. At the same time, it 

has also emerged as a worthwhile mathematical discipline in its own right. 

 A great mathematician, Euler become the Father of Graph Theory, when 

in 1736, he solved a famous unsolved problem of his days, called Konigsberg 

Bridge Problem. This is today, called as the First Problem of the Graph theory. 

This problem leads to the concept of the planar graph as well as Eulerian Graphs, 

while planar graphs were introduced for practical reasons, they pose many 

remarkable mathematical properties. In 1936, the psychologist Lewin used planar 

graphs to represent the life space of an individual. 
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Chapter 1 

BASIC CONCEPTS 

 

Graph 

 A graph is an ordered triple 𝐺 = {𝑉(𝐺), 𝐸(𝐺), 𝐼𝐺} where 𝑉(𝐺) is a non-

empty set, 𝐸(𝐺) is a set disjoint from 𝑉(𝐺) and 𝐼(𝐺) is an incidence map that 

associates each element of 𝐸(𝐺) and unordered pair of elements of 𝑉(𝐺). The 

elements of 𝑉(𝐺) are called vertices (or nodes or points) of 𝐺 and the element 

of 𝐸(𝐺) are called edges or lines of 𝐺. 

Example: 

 

Here  𝑉(𝐺)  =  {𝑣1, 𝑣2, 𝑣3, 𝑣4} 

 𝐸(𝐺)  =  {𝑒1, 𝑒2, 𝑒3, 𝑒4} 

 𝐼𝐺(𝑒1)  =  {𝑣1, 𝑣2} or {𝑣2, 𝑣1} 

 I𝐺(𝑒2)  =  {𝑣2, 𝑣3} or {𝑣3, 𝑣2} 

 𝐼𝐺(𝑒3)  =  {𝑣3, 𝑣4} or {𝑣4, 𝑣3} 

 𝐼𝐺(𝑒4)  =  {𝑣4, 𝑣1} or {𝑣1, 𝑣4} 

Multiple edges 

A set of two or more edges of a graph 𝐺 is called multiple edges or parallel 

edges if they have the same end vertices. 
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Loop 

 An edge for which the two end vertices are same is called a loop. 

 

Here {𝑒1, 𝑒2, 𝑒3, 𝑒4} form the parallel edges. 

𝑒7 is the Loop. 

Simple Graph 

 A graph is simple if it has no loops and no multiple edges. 

 

Finite & Infinite Graphs 

 A graph is called finite if both 𝑉(𝐺) & 𝐸(𝐺) are finite. A graph that is not 

finite is called infinite graph. 

 Adjacent Vertices 

 Two vertices 𝑢 and 𝑣 are said to be adjacent vertices if and only if there is 

an edge with 𝑢 and 𝑣 as its end vertices. 
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Adjacent Edges 

 Two distinct edges are said to be adjacent edges if and only if they have a 

continuous end vertex. 

Complete Graph 

 A simple graph 𝐺 is said to be complete if every pair of distinct vertices of 

𝐺 are adjacent in 𝐺. A complete graph with n vertices is denoted by 𝐾𝑛. 

 

Bipartite Graph 

 A graph is bipartite if its vertex set can be partitioned into two non-empty 

subsets 𝑋 and 𝑌 such that each edge of 𝐺 has one end in 𝑋 and the other in 𝑌. The 

pair (𝑋, 𝑌) is called a bipartition of the bipartite graph 𝐺. The bipartite graph 𝐺 

with bipartition (𝑋, 𝑌) denoted by 𝐺 (𝑋, 𝑌). 
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Here  𝑉(𝐺)  =  {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} 

The Bipartition is  

 𝑋 =  {𝑣1, 𝑣2, 𝑣3} 

 𝑌 =  {𝑣4, 𝑣5, 𝑣6, 𝑣7} 

Complete Bipartite Graph 

 A simple bipartite graph 𝐺 (𝑋, 𝑌) is complete if each vertex 𝑋 is adjacent 

to all the vertices of 𝑌. 

 

Here  𝑋 =  {𝑣1, 𝑣2, 𝑣3} 

 𝑌 =  {𝑣4, 𝑣5} 

Subgraph 

A graph 𝐻 is called subgraph of 𝐺 if 𝑉(𝐻) ⊆ 𝑉(𝐺), 𝐸(𝐻) ⊆ 𝐸(𝐺) and IH 

is the restriction of 𝐼𝐺  to 𝐸(𝐻) [ie, 𝐼𝐻(𝑒) = 𝐼𝐺(𝑒) whenever 𝑒 ∈ 𝐸(𝐻). 
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Degrees of Vertices 

 The number of edges incident with vertex 𝑉 is called degree of a vertex 

or valency of a vertex and it is denoted by 𝑑(𝑣). 

Isomorphism of Graph 

 A graph isomorphism from a graph 𝐺 to a graph 𝐻 is a pair (𝜙, 𝜃), where 

𝜙 ∶ 𝑉(𝐺) → 𝑉(𝐻) and 𝜃 ∶ 𝐸(𝐺) → 𝐸(𝐻) are bijection with a property that 

𝐼𝐺(𝑒) = {𝑢, 𝑣} and 𝐼𝐻(𝜃(𝑒)) = {𝜙(𝑢), 𝜙(𝑣)}. 

Walk 

 A walk in a graph 𝐺 is an alternative sequence 𝑊 =

𝑣0𝑣1𝑒1𝑣2𝑒2 … 𝑣𝑛𝑒𝑛 vertices and edges, beginning and ending with vertices where  

𝑣0 is the origin and 𝑣𝑛 is the terminus of 𝑊. 

 

𝑊 = 𝑣6𝑒8𝑣1𝑒1𝑣2𝑒2𝑣3𝑒3𝑣2𝑒1𝑣1 
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Closed Walk 

 A walk to begin and ends at the same vertex is called a closed walk. That 

is, the walk 𝑊 is closed if 𝑣0 = 𝑣𝑛. 

Open Walk 

 If the origin of the walk and terminus of the walk are different vertices, 

then it is called an open walk. 

Trail 

A walk is called a trail if all the edges in the walk are distinct. 

Path 

 A walk is called a path if all the vertices are distinct. 

Example: 

 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒6𝑣1 → A trail 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒3𝑣3 → A path 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒3𝑣3𝑒5𝑣1 → A trail, but not a path 

Euler’s Theorem 

 The sum of the degrees of the vertices of a graph is equal to the twice the 

number of edges. 

ie: ∑ 𝑑(𝑣𝑖) = 2𝑚𝑛
𝑖=1  
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Isomorphic Graph 

 𝐼𝐻(𝜃(𝑒)) = {𝜙(𝑢), 𝜙(𝑣)} 

A graph  𝐺1 = (𝑉1, 𝐸1) is said to be isomorphic to graph 𝐺2 = (𝑉2, 𝐸2) if 

there is a one-to-one correspondence between the edge sets 𝐸1 and 𝐸2 in such a 

way that if 𝑒1 is an edge with end vertices 𝑢1 and 𝑣1  in 𝐺1 then the corresponding 

edge 𝑒2 in 𝐺2 has its end vertices 𝑢2 and 𝑣2 in 𝐺2. This correspondence is called 

a graph isomorphism. 

Example: 

 𝐺 =    

 𝐻 =   

 

 

 

ie: G and H are isomorphic. 

Components 

 A connected component of a graph is a maximal connected subgraph. The 

term is also used for maximal subgraph or subset of a graph 's vertices that have 

some higher order of connectivity, including bi-connected components, tri-

connected components and strongly connected components. 

Tree 

 A connected graph without cycles is called a tree. 

Vertex Cut 

 Let 𝐺 be a connected graph. The set 𝑉՛ subset of 𝑉(𝐺) is called a Vertex 

cut of 𝐺, if 𝐺 − 𝑉՛ is a disconnected graph. 
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Cut Vertex 

 If 𝑉՛ = {𝑣} is a Vertex cut of the connected Graph 𝐺, then the vertex 𝒗 is 

called a Cut vertex. 

Edge Cut 

 Let 𝐺 be a non-trivial connected graph with vertex set 𝑉 and let 𝑆 be a non-

empty subset of 𝑉 and 𝑆̅ = 𝑉 − 𝑆. Let 𝐸՛ = [𝑆, 𝑆̅] denote the set of all edges of 𝐺 

that have one end vertex is 𝑆 and the other is 𝑆̅. Then 𝐺 − 𝐸՛ is a disconnected 

graph and 𝐸՛ = [𝑆, 𝑆̅] is called an edge cut of 𝐺. 

Cut Edge 

 If 𝐸՛ = {𝑒} is an edge cut of 𝐺 then 𝑒 is called a cut edge of 𝐺. 

Block 

 A block is a Connected graph without any cut vertices. 

Eg:  

  

Graph 𝐺 Blocks of 𝐺 
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Chapter 2 

PLANAR GRAPHS 

 

Plane Graph 

 A plane graph is a graph drawn in the plane, such a way that any pair of 

edges meet only at their end vertices.  

Example: 

 

Planar Graph 

 A planar graph is a graph which is isomorphic to a plane graph, ie: it can 

be drawn as a plane graph. 

A plane graph is a graph that can be drawn in the plane without any edge crossing. 
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Example of Planar graph: 

 

Planar Representation 

 The pictorial representation of a planar graph as a plane graph is called a 

planar representation. 

Eg: Is Q3 shown below, planar? 

 

The graph Q3 

Planar representation of Q3 is: 
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Jordan Curve 

 A Jordan Curve in the plane is a continuous non-self-intersecting curve 

where Origin and Terminals coincide. 

Example: 

 

Jordan Curves 

 

Non-Jordan Curves 

Remark 

 If J is a Jordan Curve in the plane, then the part of the plane enclosed by J 

is called interior of J and is denoted by ‘int J’. We exclude from ‘int J’ the points 

actually lying on J. Similarly, the part of the plane lying outside J is called the 

exterior of J and is denoted by ‘ext J’. 

Example: 

 

Arc connecting point 𝑥 in int J with point 𝑦 in ext J. 
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Theorem 

 Let J be a Jordan Curve, if 𝑥 is a point in int J and 𝑦 is a point in ext J then 

any line joining 𝑥 to 𝑦 must meet J at some point, ie: must cross J. this is called 

Jordan Curve Theorem. 

Boundary 

 The set of edges that bound a region is called its boundary. 

Definition 

 A graph which is not planar is known as non-planar graph or a graph that 

cannot be drawn in the plane without any edge crossing is known as non-planar 

graph. 

 

 

Theorem 

K5  is nonplanar: 

 Every drawing of the complex graph K5 in the plane (or sphere) contains 

at least one edge crossing. 

Proof: 

 Label the vertices 0, 1, 2, 3, 4. By the Jordan Curve theorem any drawing of the 

cycle (1, 2, 3, 4, 1) separates the plane into two regions. Consider the region with 
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vertex 0 in its interior as the ‘inside’ of the circle. By the Jordan Curve theorem, 

the edges joining vertex 0 to each of its vertices 1, 2, 3 and 4 must also lie entirely 

inside the cycle, as illustrated below. 

 

Drawing most of the K5 in the plane 

Moreover, each of the 3-cycles {0, 1, 2, 0}, {0, 2, 3, 0}, {0, 3, 4, 0} and {0, 4, 1, 0} 

also separates the plane and hence the edges (2, 4) must also lie to the exterior of 

the cycle {1, 2, 3, 4} as shown. It follows that the cycle formed by edges (2, 4), 

(4, 0) and (0, 2) separates the vertices 1 and 3, again by Jordan Curve theorem. 

Thus, it is impossible to draw edge (1, 3) without crossing an edge of that cycle. 

So, it is proven that the drawing of the K5 in the plane contains at least one edge-

crossing.  

Theorem 

 K33 is nonplanar: 

 Every drawing of the complete bipartite graph K33 in the plane (or sphere) 

contains at least one edge crossing. 

Proof: 

 Label the vertices of one partite set 0, 2, 4 and of the order 1, 3, 5. By the 

Jordan Curve theorem, cycle {2, 3, 4, 5, 2} separates the plane into two regions, 



15 
 

and as in the previous proof (K5), we regard the region containing the vertex 0 as 

the ‘inside’ of the cycle. By the Jordan Curve theorem, the edges joining vertex 

0 to each of the vertices 3 and 5 lie entirely inside that cycle, and each of the cycle 

{0, 3, 2, 5, 0} and {0, 3. 4, 5, 0} separates the plane, as illustrated below. 

 

Drawing most of the K33 in the plane 

 Thus, there are 3 regions: the exterior of cycles {2, 3, 4, 5, 2} and the inside 

of each of the other two cycles. It follows that no matter which region contains 

vertex 1, there must be some even numbered vertex that is not in that region, and 

hence the edge from vertex 1 to that even-numbered vertex would have to cross 

some cycle edge. 

Corollary 

 Subgraph of a planar graph is planar. 

Definition 

 A plane graph partitions the plane into number of regions called faces.  

Let G be plane graph. If x is a point on the plane which is not in G, ie: 𝑥 is not a 

vertex of G or a point on any edge of G, then we define the faces of G containing 

𝑥 to be the set of all points on the plane which can be reached from 𝑥 by a line 

which does not cross any edge of G or go through any vertex of G.  
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The number of faces of a plane graph G denoted by 𝑓(𝑎) or simply 𝑓.  

Each plane graph has exactly one unbounded face called the exterior face. 

 

Here 𝑓(𝐺)  =  4  

Degree of faces 

 The degree 𝑑(𝑓) of a face 𝑓 is the number of edges with which it is 

incident, that is the number of edges in the boundary of a face. 

Cut edge being counted twice. 

Eg:  

 

Theorem 

 A graph is planar if and only if each of its blocks is planar. 

Proof: 

 If G is planar, then each of its blocks is planar since a subgraph of planar 

graph is planar.  

 Conversely, suppose that each block of G is planar. We now use induction 

on the number of blocks of G to prove the result. Without loss of generality, we 

𝑑(𝑓2) = 3 

𝑑(𝑓1) = 4 

𝑑(𝑓3) = 3 
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assume that G is connected. If G has only one block, then G itself is a block, and 

hence G is planar. 

 Now suppose G has k planar blocks and that the result has been proved for 

all connected graph having (k-1) planar blocks. Choose any end block B0 of G 

and delete from G all the vertices of B0 except the unique cut vertex, say 𝑣0 of G 

in B0. The resulting connected graph G` of G contains (k-1) planar blocks. Hence, 

by the induction hypothesis G` is planar. Let G~` be  plane embedded of G` such 

that 𝑣0 belongs to the boundary of unbounded face, say 𝑓 `. Let B0
~ be a plane 

embedding of B0 in 𝑓 `, so that 𝑣0 is in the exterior face of B0
~. Then G~` and B0

~ 

is a plane embedding of G. 
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Chapter 3 

EULER’S FORMULA 

 

Theorems  

Euler Formula: 

 For a connected plain graph 𝐺, 𝑛 − 𝑚 + 𝑓 = 2 where 𝑛, 𝑚, and 𝑓 denote 

the number of vertices, edges and faces of 𝐺 respectively. 

Proof: 

We apply the induction on 𝑓. 

If 𝑓 = 1 the 𝐺 is a tree and 𝑚 = 𝑛 − 1. 

Hence 𝑛 − 𝑚 + 𝑓 = 2 and suppose that 𝐺 has 𝑓 faces. 

Since 𝑓 ≥ 2, 𝐺 is not a tree and hence contains a cycle 𝐶. Let 𝑒 be an edge of 𝐶. 

Then 𝑒 belongs to exactly 2 faces, say 𝑓1and 𝑓2 and the deletion of 𝑒 from 𝐺 

results in the formation of a single face from 𝑓1and 𝑓2. Also, since 𝑒 is not a cut 

edge of 𝐺. 𝐺 − 𝑒 is connected.  

Further the number of faces of 𝐺 − 𝑒 is 𝑓 − 1, number of edges in 𝐺 − 𝑒 is 𝑚 −

1 and number of vertices in 𝐺 − 𝑒 is 𝑛. So, applying induction to 𝐺 − 𝑒, we get 

𝑛 − (𝑚 − 1) + (𝑓 − 1) = 2 and this implies that 𝑛 − 𝑚 + 𝑓 = 2. This 

completes the proof of theorem. 

Corollary 1 

 All plane embedding of a planar graph have the same number of faces.  
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Proof: 

Since 𝑓 = 𝑚 − 𝑛 + 2 the number of faces depends only on 𝑛 and 𝑚 and not on 

the particular embedding. 

Corollary 2 

 If 𝐺 is a simple planar graph with at least 3 vertices, then 𝑚 ≤ 3𝑛 − 6. 

Proof: 

Without the generality we can assume that 𝐺 is a simple connected plane graph. 

Since 𝐺 is simple and 𝑛 ≥ 3, each face of 𝐺 has degree at least 3. Hence if 𝑓 

denote the set of faces of 𝐺 ∑ 𝑑(𝑓)𝑓𝜖𝐹 ≥ 3𝑓. But ∑ 𝑑(𝑓)𝑓𝜖𝐹 = 2𝑚. 

Consequently 2𝑚 ≥ 3𝑓 so that 𝑓 ≤
2𝑚

3
. 

By the Euler formula 𝑚 = 𝑛 + 𝑓 − 2 now 𝑓 ≤
2𝑚

3
 implies m ≤ n + (

2m

3
) − 2. 

This gives. 𝑚 ≤ 3𝑛 − 6. 
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Chapter 4 

DUAL OF A PLANE GRAPH 

 

Definition 

 Let G be a plane graph. One can form out of G a new graph H in the 

following way corresponding to each face f(g), take the vertex f* and 

corresponding to each edge e(g), take an edge e*. Then edge e* joins vertices f* 

and g* in H iff edge e is common to the boundaries of faces f and g in G. The 

graph H is then called dual of G. 

Example: 

 

Plane graph and its Dual 
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CONCLUSION 

 

 In this project we discussed the topic planar graph in graph theory.  

We discussed about Euler formula and verified that some graphs are planar, and 

some are non-planar. A related important property of planar graphs, maps and 

triangulations is that they can be enumerated very nicely.  

We also discussed about duality of a graph.in mathematical discipline of graph 

theory, the dual graph of a plane graph G is a graph that has a vertex of each face 

of G .it has many applications in mathematical and computational study.  

In fact, graph theory is being used in our so many routine activities. For eg; using 

GPS or google maps to determine a route based on used settings. 
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INTRODUCTION 

 

 In recent years, Graph Theory has established itself as an important 

mathematical tool in a wide variety of subjects, ranging from Operational 

Research and Chemistry to Genetics and Linguistics, and from Electrical 

Engineering and Geography to Sociology and Architecture. At the same time, it 

has also emerged as a worthwhile mathematical discipline in its own right. 

 A great mathematician, Euler become the Father of Graph Theory, when 

in 1736, he solved a famous unsolved problem of his days, called Konigsberg 

Bridge Problem. This is today, called as the First Problem of the Graph theory. 

This problem leads to the concept of the planar graph as well as Eulerian Graphs, 

while planar graphs were introduced for practical reasons, they pose many 

remarkable mathematical properties. In 1936, the psychologist Lewin used planar 

graphs to represent the life space of an individual. 
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Chapter 1 

BASIC CONCEPTS 

 

Graph 

 A graph is an ordered triple 𝐺 = {𝑉(𝐺), 𝐸(𝐺), 𝐼𝐺} where 𝑉(𝐺) is a non-

empty set, 𝐸(𝐺) is a set disjoint from 𝑉(𝐺) and 𝐼(𝐺) is an incidence map that 

associates each element of 𝐸(𝐺) and unordered pair of elements of 𝑉(𝐺). The 

elements of 𝑉(𝐺) are called vertices (or nodes or points) of 𝐺 and the element 

of 𝐸(𝐺) are called edges or lines of 𝐺. 

Example: 

 

Here  𝑉(𝐺)  =  {𝑣1, 𝑣2, 𝑣3, 𝑣4} 

 𝐸(𝐺)  =  {𝑒1, 𝑒2, 𝑒3, 𝑒4} 

 𝐼𝐺(𝑒1)  =  {𝑣1, 𝑣2} or {𝑣2, 𝑣1} 

 I𝐺(𝑒2)  =  {𝑣2, 𝑣3} or {𝑣3, 𝑣2} 

 𝐼𝐺(𝑒3)  =  {𝑣3, 𝑣4} or {𝑣4, 𝑣3} 

 𝐼𝐺(𝑒4)  =  {𝑣4, 𝑣1} or {𝑣1, 𝑣4} 

Multiple edges 

A set of two or more edges of a graph 𝐺 is called multiple edges or parallel 

edges if they have the same end vertices. 
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Loop 

 An edge for which the two end vertices are same is called a loop. 

 

Here {𝑒1, 𝑒2, 𝑒3, 𝑒4} form the parallel edges. 

𝑒7 is the Loop. 

Simple Graph 

 A graph is simple if it has no loops and no multiple edges. 

 

Finite & Infinite Graphs 

 A graph is called finite if both 𝑉(𝐺) & 𝐸(𝐺) are finite. A graph that is not 

finite is called infinite graph. 

 Adjacent Vertices 

 Two vertices 𝑢 and 𝑣 are said to be adjacent vertices if and only if there is 

an edge with 𝑢 and 𝑣 as its end vertices. 
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Adjacent Edges 

 Two distinct edges are said to be adjacent edges if and only if they have a 

continuous end vertex. 

Complete Graph 

 A simple graph 𝐺 is said to be complete if every pair of distinct vertices of 

𝐺 are adjacent in 𝐺. A complete graph with n vertices is denoted by 𝐾𝑛. 

 

Bipartite Graph 

 A graph is bipartite if its vertex set can be partitioned into two non-empty 

subsets 𝑋 and 𝑌 such that each edge of 𝐺 has one end in 𝑋 and the other in 𝑌. The 

pair (𝑋, 𝑌) is called a bipartition of the bipartite graph 𝐺. The bipartite graph 𝐺 

with bipartition (𝑋, 𝑌) denoted by 𝐺 (𝑋, 𝑌). 
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Here  𝑉(𝐺)  =  {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} 

The Bipartition is  

 𝑋 =  {𝑣1, 𝑣2, 𝑣3} 

 𝑌 =  {𝑣4, 𝑣5, 𝑣6, 𝑣7} 

Complete Bipartite Graph 

 A simple bipartite graph 𝐺 (𝑋, 𝑌) is complete if each vertex 𝑋 is adjacent 

to all the vertices of 𝑌. 

 

Here  𝑋 =  {𝑣1, 𝑣2, 𝑣3} 

 𝑌 =  {𝑣4, 𝑣5} 

Subgraph 

A graph 𝐻 is called subgraph of 𝐺 if 𝑉(𝐻) ⊆ 𝑉(𝐺), 𝐸(𝐻) ⊆ 𝐸(𝐺) and IH 

is the restriction of 𝐼𝐺  to 𝐸(𝐻) [ie, 𝐼𝐻(𝑒) = 𝐼𝐺(𝑒) whenever 𝑒 ∈ 𝐸(𝐻). 
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Degrees of Vertices 

 The number of edges incident with vertex 𝑉 is called degree of a vertex 

or valency of a vertex and it is denoted by 𝑑(𝑣). 

Isomorphism of Graph 

 A graph isomorphism from a graph 𝐺 to a graph 𝐻 is a pair (𝜙, 𝜃), where 

𝜙 ∶ 𝑉(𝐺) → 𝑉(𝐻) and 𝜃 ∶ 𝐸(𝐺) → 𝐸(𝐻) are bijection with a property that 

𝐼𝐺(𝑒) = {𝑢, 𝑣} and 𝐼𝐻(𝜃(𝑒)) = {𝜙(𝑢), 𝜙(𝑣)}. 

Walk 

 A walk in a graph 𝐺 is an alternative sequence 𝑊 =

𝑣0𝑣1𝑒1𝑣2𝑒2 … 𝑣𝑛𝑒𝑛 vertices and edges, beginning and ending with vertices where  

𝑣0 is the origin and 𝑣𝑛 is the terminus of 𝑊. 

 

𝑊 = 𝑣6𝑒8𝑣1𝑒1𝑣2𝑒2𝑣3𝑒3𝑣2𝑒1𝑣1 
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Closed Walk 

 A walk to begin and ends at the same vertex is called a closed walk. That 

is, the walk 𝑊 is closed if 𝑣0 = 𝑣𝑛. 

Open Walk 

 If the origin of the walk and terminus of the walk are different vertices, 

then it is called an open walk. 

Trail 

A walk is called a trail if all the edges in the walk are distinct. 

Path 

 A walk is called a path if all the vertices are distinct. 

Example: 

 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒6𝑣1 → A trail 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒3𝑣3 → A path 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒3𝑣3𝑒5𝑣1 → A trail, but not a path 

Euler’s Theorem 

 The sum of the degrees of the vertices of a graph is equal to the twice the 

number of edges. 

ie: ∑ 𝑑(𝑣𝑖) = 2𝑚𝑛
𝑖=1  
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Isomorphic Graph 

 𝐼𝐻(𝜃(𝑒)) = {𝜙(𝑢), 𝜙(𝑣)} 

A graph  𝐺1 = (𝑉1, 𝐸1) is said to be isomorphic to graph 𝐺2 = (𝑉2, 𝐸2) if 

there is a one-to-one correspondence between the edge sets 𝐸1 and 𝐸2 in such a 

way that if 𝑒1 is an edge with end vertices 𝑢1 and 𝑣1  in 𝐺1 then the corresponding 

edge 𝑒2 in 𝐺2 has its end vertices 𝑢2 and 𝑣2 in 𝐺2. This correspondence is called 

a graph isomorphism. 

Example: 

 𝐺 =    

 𝐻 =   

 

 

 

ie: G and H are isomorphic. 

Components 

 A connected component of a graph is a maximal connected subgraph. The 

term is also used for maximal subgraph or subset of a graph 's vertices that have 

some higher order of connectivity, including bi-connected components, tri-

connected components and strongly connected components. 

Tree 

 A connected graph without cycles is called a tree. 

Vertex Cut 

 Let 𝐺 be a connected graph. The set 𝑉՛ subset of 𝑉(𝐺) is called a Vertex 

cut of 𝐺, if 𝐺 − 𝑉՛ is a disconnected graph. 
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Cut Vertex 

 If 𝑉՛ = {𝑣} is a Vertex cut of the connected Graph 𝐺, then the vertex 𝒗 is 

called a Cut vertex. 

Edge Cut 

 Let 𝐺 be a non-trivial connected graph with vertex set 𝑉 and let 𝑆 be a non-

empty subset of 𝑉 and 𝑆̅ = 𝑉 − 𝑆. Let 𝐸՛ = [𝑆, 𝑆̅] denote the set of all edges of 𝐺 

that have one end vertex is 𝑆 and the other is 𝑆̅. Then 𝐺 − 𝐸՛ is a disconnected 

graph and 𝐸՛ = [𝑆, 𝑆̅] is called an edge cut of 𝐺. 

Cut Edge 

 If 𝐸՛ = {𝑒} is an edge cut of 𝐺 then 𝑒 is called a cut edge of 𝐺. 

Block 

 A block is a Connected graph without any cut vertices. 

Eg:  

  

Graph 𝐺 Blocks of 𝐺 
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Chapter 2 

PLANAR GRAPHS 

 

Plane Graph 

 A plane graph is a graph drawn in the plane, such a way that any pair of 

edges meet only at their end vertices.  

Example: 

 

Planar Graph 

 A planar graph is a graph which is isomorphic to a plane graph, ie: it can 

be drawn as a plane graph. 

A plane graph is a graph that can be drawn in the plane without any edge crossing. 
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Example of Planar graph: 

 

Planar Representation 

 The pictorial representation of a planar graph as a plane graph is called a 

planar representation. 

Eg: Is Q3 shown below, planar? 

 

The graph Q3 

Planar representation of Q3 is: 
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Jordan Curve 

 A Jordan Curve in the plane is a continuous non-self-intersecting curve 

where Origin and Terminals coincide. 

Example: 

 

Jordan Curves 

 

Non-Jordan Curves 

Remark 

 If J is a Jordan Curve in the plane, then the part of the plane enclosed by J 

is called interior of J and is denoted by ‘int J’. We exclude from ‘int J’ the points 

actually lying on J. Similarly, the part of the plane lying outside J is called the 

exterior of J and is denoted by ‘ext J’. 

Example: 

 

Arc connecting point 𝑥 in int J with point 𝑦 in ext J. 
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Theorem 

 Let J be a Jordan Curve, if 𝑥 is a point in int J and 𝑦 is a point in ext J then 

any line joining 𝑥 to 𝑦 must meet J at some point, ie: must cross J. this is called 

Jordan Curve Theorem. 

Boundary 

 The set of edges that bound a region is called its boundary. 

Definition 

 A graph which is not planar is known as non-planar graph or a graph that 

cannot be drawn in the plane without any edge crossing is known as non-planar 

graph. 

 

 

Theorem 

K5  is nonplanar: 

 Every drawing of the complex graph K5 in the plane (or sphere) contains 

at least one edge crossing. 

Proof: 

 Label the vertices 0, 1, 2, 3, 4. By the Jordan Curve theorem any drawing of the 

cycle (1, 2, 3, 4, 1) separates the plane into two regions. Consider the region with 



14 
 

vertex 0 in its interior as the ‘inside’ of the circle. By the Jordan Curve theorem, 

the edges joining vertex 0 to each of its vertices 1, 2, 3 and 4 must also lie entirely 

inside the cycle, as illustrated below. 

 

Drawing most of the K5 in the plane 

Moreover, each of the 3-cycles {0, 1, 2, 0}, {0, 2, 3, 0}, {0, 3, 4, 0} and {0, 4, 1, 0} 

also separates the plane and hence the edges (2, 4) must also lie to the exterior of 

the cycle {1, 2, 3, 4} as shown. It follows that the cycle formed by edges (2, 4), 

(4, 0) and (0, 2) separates the vertices 1 and 3, again by Jordan Curve theorem. 

Thus, it is impossible to draw edge (1, 3) without crossing an edge of that cycle. 

So, it is proven that the drawing of the K5 in the plane contains at least one edge-

crossing.  

Theorem 

 K33 is nonplanar: 

 Every drawing of the complete bipartite graph K33 in the plane (or sphere) 

contains at least one edge crossing. 

Proof: 

 Label the vertices of one partite set 0, 2, 4 and of the order 1, 3, 5. By the 

Jordan Curve theorem, cycle {2, 3, 4, 5, 2} separates the plane into two regions, 
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and as in the previous proof (K5), we regard the region containing the vertex 0 as 

the ‘inside’ of the cycle. By the Jordan Curve theorem, the edges joining vertex 

0 to each of the vertices 3 and 5 lie entirely inside that cycle, and each of the cycle 

{0, 3, 2, 5, 0} and {0, 3. 4, 5, 0} separates the plane, as illustrated below. 

 

Drawing most of the K33 in the plane 

 Thus, there are 3 regions: the exterior of cycles {2, 3, 4, 5, 2} and the inside 

of each of the other two cycles. It follows that no matter which region contains 

vertex 1, there must be some even numbered vertex that is not in that region, and 

hence the edge from vertex 1 to that even-numbered vertex would have to cross 

some cycle edge. 

Corollary 

 Subgraph of a planar graph is planar. 

Definition 

 A plane graph partitions the plane into number of regions called faces.  

Let G be plane graph. If x is a point on the plane which is not in G, ie: 𝑥 is not a 

vertex of G or a point on any edge of G, then we define the faces of G containing 

𝑥 to be the set of all points on the plane which can be reached from 𝑥 by a line 

which does not cross any edge of G or go through any vertex of G.  
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The number of faces of a plane graph G denoted by 𝑓(𝑎) or simply 𝑓.  

Each plane graph has exactly one unbounded face called the exterior face. 

 

Here 𝑓(𝐺)  =  4  

Degree of faces 

 The degree 𝑑(𝑓) of a face 𝑓 is the number of edges with which it is 

incident, that is the number of edges in the boundary of a face. 

Cut edge being counted twice. 

Eg:  

 

Theorem 

 A graph is planar if and only if each of its blocks is planar. 

Proof: 

 If G is planar, then each of its blocks is planar since a subgraph of planar 

graph is planar.  

 Conversely, suppose that each block of G is planar. We now use induction 

on the number of blocks of G to prove the result. Without loss of generality, we 

𝑑(𝑓2) = 3 

𝑑(𝑓1) = 4 

𝑑(𝑓3) = 3 
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assume that G is connected. If G has only one block, then G itself is a block, and 

hence G is planar. 

 Now suppose G has k planar blocks and that the result has been proved for 

all connected graph having (k-1) planar blocks. Choose any end block B0 of G 

and delete from G all the vertices of B0 except the unique cut vertex, say 𝑣0 of G 

in B0. The resulting connected graph G` of G contains (k-1) planar blocks. Hence, 

by the induction hypothesis G` is planar. Let G~` be  plane embedded of G` such 

that 𝑣0 belongs to the boundary of unbounded face, say 𝑓 `. Let B0
~ be a plane 

embedding of B0 in 𝑓 `, so that 𝑣0 is in the exterior face of B0
~. Then G~` and B0

~ 

is a plane embedding of G. 
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Chapter 3 

EULER’S FORMULA 

 

Theorems  

Euler Formula: 

 For a connected plain graph 𝐺, 𝑛 − 𝑚 + 𝑓 = 2 where 𝑛, 𝑚, and 𝑓 denote 

the number of vertices, edges and faces of 𝐺 respectively. 

Proof: 

We apply the induction on 𝑓. 

If 𝑓 = 1 the 𝐺 is a tree and 𝑚 = 𝑛 − 1. 

Hence 𝑛 − 𝑚 + 𝑓 = 2 and suppose that 𝐺 has 𝑓 faces. 

Since 𝑓 ≥ 2, 𝐺 is not a tree and hence contains a cycle 𝐶. Let 𝑒 be an edge of 𝐶. 

Then 𝑒 belongs to exactly 2 faces, say 𝑓1and 𝑓2 and the deletion of 𝑒 from 𝐺 

results in the formation of a single face from 𝑓1and 𝑓2. Also, since 𝑒 is not a cut 

edge of 𝐺. 𝐺 − 𝑒 is connected.  

Further the number of faces of 𝐺 − 𝑒 is 𝑓 − 1, number of edges in 𝐺 − 𝑒 is 𝑚 −

1 and number of vertices in 𝐺 − 𝑒 is 𝑛. So, applying induction to 𝐺 − 𝑒, we get 

𝑛 − (𝑚 − 1) + (𝑓 − 1) = 2 and this implies that 𝑛 − 𝑚 + 𝑓 = 2. This 

completes the proof of theorem. 

Corollary 1 

 All plane embedding of a planar graph have the same number of faces.  
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Proof: 

Since 𝑓 = 𝑚 − 𝑛 + 2 the number of faces depends only on 𝑛 and 𝑚 and not on 

the particular embedding. 

Corollary 2 

 If 𝐺 is a simple planar graph with at least 3 vertices, then 𝑚 ≤ 3𝑛 − 6. 

Proof: 

Without the generality we can assume that 𝐺 is a simple connected plane graph. 

Since 𝐺 is simple and 𝑛 ≥ 3, each face of 𝐺 has degree at least 3. Hence if 𝑓 

denote the set of faces of 𝐺 ∑ 𝑑(𝑓)𝑓𝜖𝐹 ≥ 3𝑓. But ∑ 𝑑(𝑓)𝑓𝜖𝐹 = 2𝑚. 

Consequently 2𝑚 ≥ 3𝑓 so that 𝑓 ≤
2𝑚

3
. 

By the Euler formula 𝑚 = 𝑛 + 𝑓 − 2 now 𝑓 ≤
2𝑚

3
 implies m ≤ n + (

2m

3
) − 2. 

This gives. 𝑚 ≤ 3𝑛 − 6. 

  



20 
 

Chapter 4 

DUAL OF A PLANE GRAPH 

 

Definition 

 Let G be a plane graph. One can form out of G a new graph H in the 

following way corresponding to each face f(g), take the vertex f* and 

corresponding to each edge e(g), take an edge e*. Then edge e* joins vertices f* 

and g* in H iff edge e is common to the boundaries of faces f and g in G. The 

graph H is then called dual of G. 

Example: 

 

Plane graph and its Dual 
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CONCLUSION 

 

 In this project we discussed the topic planar graph in graph theory.  

We discussed about Euler formula and verified that some graphs are planar, and 

some are non-planar. A related important property of planar graphs, maps and 

triangulations is that they can be enumerated very nicely.  

We also discussed about duality of a graph.in mathematical discipline of graph 

theory, the dual graph of a plane graph G is a graph that has a vertex of each face 

of G .it has many applications in mathematical and computational study.  

In fact, graph theory is being used in our so many routine activities. For eg; using 

GPS or google maps to determine a route based on used settings. 
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INTRODUCTION 

         In mathematics, a group is a set equipped with a binary operation that combines any two 

elements to form a third element in such a way that the three conditions called group axioms are 

satisfied , namely associativity , identity and invertability. 

           Let us take a moment to review our present stockpile of groups. Starting with finite 

groups, we have the cyclic group ℤ𝑛 ,the symmetric group 𝑆𝑛 , and the alternating group 𝐴𝑛 for 

each positive integer n. We also have the dihedral group 𝐷𝑛 and klein 4-group  . Of course we 

know that subgroups of these groups exists. Turning to infinite groups , we have ℤ, ℝ, ℂ under 

addition , and their non zero elements under multiplication we also have the group 𝑆𝐴 of all 

permutation of an infinite set 𝐴 , as well as various groups formed from matrices . 

          One purpose of this section  is to show a way to use known groups as building blocks to 

form more groups. Given two groups 𝐺 and 𝐻, it is possible to construct a new group from the 

cartesian product of 𝐺 and 𝐻 . Conversely , given a large group , it is sometimes possible to 

decompose the group ; that is , a group is sometimes isomorphic to the direct product of two 

smaller groups. Rather than studying a large group , it is often easier to study the component 

group of that group. 
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PRELIMINARY 

         Groups : A non empty set 𝐺 together with an operation ∗ is said to be a group , denote by 

(𝐺 ,∗) , if it satisfy the following axioms. 

• Closure property 

• Associative property 

• Existence of identity 

• Existence of inverse 

                   

Abelian group 

         A group (𝐺 ,∗) is said to be abelian if it satisfies  commutative law . 

Finite group 

         If the underlying set G of the group  (𝐺 ,∗) consist of finite number of elements , then the 

group is finite group . 

Infinite group  

         A group that is not finite is an infinite group . 

Order of a group : The number of elements in a finite  group is called the order of the group , 

denoted by 𝑂(𝐺) . 

Example 

          Show that the set of integers ℤ is a group with respect to the operation of addition of 

integers. 

ℤ =  {… … … . −3, −2, −1,0,1,2,3, … … … } 

Since the addition of two integers gives an integer , it satisfy closure property .  
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If 𝑎, 𝑏, 𝑐 𝜖 ℤ then the (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) , hence associativity holds .  

There is a number 0 𝜖 ℤ such that 0 + 𝑎 = 𝑎 + 0 , hence identity exists 

If 𝑎 𝜖 ℤ then there exists – 𝑎 𝜖 ℤ , such that −𝑎 +  𝑎 =  0 =  𝑎 + −𝑎 

Therefore inverse exist .  

Therefore ℤ is a group under addition .  

Subgroup   

A subset 𝐻 of 𝐺 is said to be a subgroup of 𝐺 if 𝐻 itself is a group under the same operation in 

𝐺. 

There are two different types of group structure of order 4 . 

 ℤ4 =  { 0,1,2,3} 

Klein 4 – group , 𝑉 = {𝑒, 𝑎, 𝑏, 𝑐} 

Cyclic group 

     A group 𝐺 is cyclic if there is some element ‘𝑎’ in 𝐺 that generate 𝐺. And the element ‘𝑎’ is 

called generator of  𝐺.  

Group Homomorphism  

    A function Ѱ: 𝐺 →  𝐺′ is a group homomorphism ( or simply homomorphism ). 

If Ѱ(𝑎𝑏) = Ѱ(𝑎) Ѱ(𝑏) hold for all 𝑎 , 𝑏 ∈ 𝐺 , is called homomorphism property . 

Isomorphism  

    A one  to  one and onto homomorphism Ѱ: 𝐺 → 𝐺′ is called an isomorphism .  
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CHAPTER – 1 

 

DIRECT PRODUCT OF GROUPS 

 

Definition 

The Cartesian product of sets  𝑆, 𝑆2, … … . , 𝑆𝑛 is the set of all ordered n-tuples (𝑎1, 𝑎2, … … . , 𝑎𝑛), 

where 𝑎𝑖  ∈  𝑆𝑖 for 𝑖 = 1,2,3, … … . , 𝑛. The Cartesian product is denoted by either 

 𝑆1 × 𝑆2 × … … .× 𝑆𝑛  or  by Π𝑖=1
𝑛 𝑆𝑖. 

Let 𝐺1, 𝐺2, … … . , 𝐺𝑛 be groups and let us use multiplicative notation for all the group operations. 

If we consider 𝐺𝑖 as a set , 𝑖 = 1,2, … … . 𝑛 . we have the products 𝐺1 × 𝐺2 × … … . ,× 𝐺𝑛 we 

denote it by  Π𝑖=1
𝑛 𝐺𝑖. This product is called direct-product of groups. We can make Π𝑖=1

𝑛 𝐺𝑖 into a 

group by means of a binary operation of multiplication by components. 

 

Theorem 

Let 𝐺1, 𝐺2, … … . , 𝐺𝑛 be groups. For (𝑎1, 𝑎2, … … . , 𝑎𝑛) and (𝑏1, 𝑏2, … … . , 𝑏𝑛) in Π𝑖=1
𝑛 𝐺𝑖 define ; 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛) = (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) 

Then Π𝑖=1
𝑛 𝐺𝑖 is a group. 
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Proof 

 We have , 

Π𝑖=1
𝑛 𝐺𝑖 = {(𝑎1, 𝑎2, … … . , 𝑎𝑛) ∶  𝑎𝑖 ∈  𝐺𝑖} 

(1) Closure property 

Let  (𝑎1, 𝑎2, … … . , 𝑎𝑛), (𝑏1, 𝑏2, … … . , 𝑏𝑛)  ∈  Π𝑖=1
𝑛 𝐺𝑖  

And we have , 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛) = (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) 

Here 𝑎𝑖 ∈ 𝐺𝑖 and 𝑏𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛 

∵  𝐺𝑖 is a group , 𝑎𝑖𝑏𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛 

⇒ (𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

i.e. Π𝑖=1
𝑛 𝐺𝑖 is closed under the binary operation. 

(2) Associativity 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛), (𝑏1, 𝑏2, … … . , 𝑏𝑛), (𝑐1, 𝑐2, … … . , 𝑐𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖  

We have, 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛)(𝑐1, 𝑐2, … … . , 𝑐𝑛) 

   = (𝑎1𝑏1𝑐1 , 𝑎2𝑏2𝑐2, … … . , 𝑎𝑛𝑏𝑛𝑐𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

[(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑏1, 𝑏2, … … . , 𝑏𝑛)](𝑐1, 𝑐2, … … . , 𝑐𝑛) 

= [𝑎1𝑏1, 𝑎2𝑏2, … … . , 𝑎𝑛𝑏𝑛](𝑐1, 𝑐2, … … . , 𝑐𝑛) 

= [(𝑎1𝑏1)𝑐1, (𝑎2𝑏2)𝑐2, … … . , (𝑎𝑛𝑏𝑛)𝑐𝑛] 

= [𝑎1(𝑏1𝑐1), 𝑎2(𝑏2𝑐2), … … . , 𝑎𝑛(𝑏𝑛𝑐𝑛)] 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛)[𝑏1𝑐1, 𝑏2𝑐2, … … . , 𝑏𝑛𝑐𝑛] 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛)[(𝑏1, 𝑏2, … … . , 𝑏𝑛)(𝑐1, 𝑐2, … … . , 𝑐𝑛)] 
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Hence associativity holds. 

(3) Existence of identity 

If 𝑒𝑖 is the identity element in 𝐺𝑖. 

Then, 

(𝑒1, 𝑒2, … … . , 𝑒𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

Also for , 

 (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖, 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑒1, 𝑒2, … … . , 𝑒𝑛) = (𝑎1𝑒1, 𝑎2𝑒2, … … . , 𝑎𝑛𝑒𝑛) 

= (𝑎1, 𝑎2, … … . , 𝑎𝑛) 

∴ (𝑒1, 𝑒2, … … . , 𝑒𝑛) is the identity element ‘𝑒’ in Π𝑖=1
𝑛 𝐺𝑖 

(4) Existence of inverse 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ Π𝑖=1
𝑛 𝐺𝑖 

Here 𝑎𝑖 ∈ 𝐺𝑖 for 𝑖 = 1,2, … … . , 𝑛. 

Since 𝐺𝑖 is a group , 

∃ an inverse element 𝑎𝑖
−1 in 𝐺𝑖 : 𝑎𝑖𝑎𝑖

−1 = 𝑒𝑖           𝑖 = 1,2, … … . , 𝑛 

Clearly,                  (𝑎1
−1, 𝑎2

−1, … … . , 𝑎𝑛
−1) ∈ Π𝑖=1

𝑛 𝐺𝑖   & 

(𝑎1, 𝑎2, … … . , 𝑎𝑛)(𝑎1
−1, 𝑎2

−1, … … . , 𝑎𝑛
−1) = (𝑒1, 𝑒2, … … . , 𝑒𝑛)  

Hence Π𝑖=1
𝑛 𝐺𝑖 is a group. 
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Note 

If the operation of each 𝐺𝑖 is a commutative. We sometimes use additive notation in Π𝑖=1
𝑛 𝐺𝑖 and 

refer to Π𝑖=1
𝑛 𝐺𝑖 as the direct sum of the group 𝐺𝑖. The notation ⨁𝑖=1

𝑛 𝐺𝑖 , especially with abelian 

groups with operation +. 

The direct sum of abelian groups 𝐺1, 𝐺2, … … . , 𝐺𝑛 may be written 𝐺1⨁𝐺2⨁ … … ⨁𝐺𝑛 

• Direct product of abelian group is abelian 

Example 

Q. Check whether ℤ2 × ℤ3 is cyclic or not. 

ℤ2 = {0,1} 

ℤ3 = {0,1,2} 

ℤ2 × ℤ3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)} 

Consider, 

1(1,1) = (1,1) 

2(1,1) = (1,1) + (1,1) = (0,2) 

3(1,1) = (1,1) + (1,1) + (1,1) = (1,0) 

4(1,1) = 3(1,1) + (1,1) = (1,0) + (1,1) = (0,1) 

5(1,1) = 4(1,1) + (1,1) = (0,1) + (1,1) = (1,2) 

6(1,1) = 5(1,1) + (1,1) = (1,2) + (1,1) = (0,0) 

∴ (1,1) is a generator of ℤ2 ×  ℤ3 

∴  ℤ2 × ℤ3 is a cyclic group generated by (1,1). 
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Q. Check whether ℤ3 × ℤ3 is cyclic or not. 

 ℤ3 = {0,1,2} 

ℤ3 × ℤ3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)} 

1(0,1) = (0,1) 

2(0,1) = (0,2) 

3(0,1) = (0,3) = (0,0)            ∴  order (0,1) = 3 

1(0,2) = (0,2) 

2(0,2) = (0,4) = (0,1) 

3(0,2) = (0,6) = (0,0)           ∴  order (0,2) = 3 

Every element added to itself three times gives the identity. Thus no element can 

generate the group. Hence ℤ3 ×  ℤ3 is not cyclic. 

similarly ℤ𝑚 × ℤ𝑚 is not cyclic for any 𝑚. 

 

Theorem 

The group ℤ𝑚 × ℤ𝑛 is cyclic and is isomorphic to ℤ𝑚𝑛 if and only if 𝑚 and 𝑛 are relatively 

prime, that is, the gcd of 𝑚 and 𝑛 is 1. 

Proof 

Suppose ℤ𝑚 × ℤ𝑛 is cyclic and isomorphic to ℤ𝑚𝑛. 

To show that 𝑚 and 𝑛 are relatively prime. 

Suppose not, let d be the 𝑔𝑐𝑑 of 𝑚 and 𝑛. 

So that 𝑑 > 1 
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Consider 
𝑚𝑛

𝑑
 , which is an integer since 𝑑|𝑚 and 𝑑|𝑛 

Let (𝑟, 𝑠) be an arbitrary element of ℤ𝑚 ×  ℤ𝑛, add (𝑟, 𝑠) repeatedly 
𝑚𝑛

𝑑
 times 

(𝑟, 𝑠) + (𝑟, 𝑠)+, … … . , +(𝑟, 𝑠)} 𝑚𝑛

𝑑
𝑡𝑖𝑚𝑒𝑠 = (0,0) 

∴ no element of ℤ𝑚 × ℤ𝑛 having order 𝑚𝑛. ∴ no element of ℤ𝑚 × ℤ𝑛 can generate ℤ𝑚 ×  ℤ𝑛 

which is not possible. ∵  ℤ𝑚 × ℤ𝑛 is cyclic. Hence 𝑔𝑐𝑑(𝑚, 𝑛) = 1. 

i.e. 𝑚 and 𝑛 are relatively prime. 

Conversely, suppose 𝑚 and 𝑛 are relatively prime, i.e. gcd(𝑚, 𝑛) = 1 

To show that ℤ𝑚 × ℤ𝑛 is cyclic. 

If ℤ𝑚 ×  ℤ𝑛 is cyclic, then it is isomorphic  to ℤ𝑚𝑛, ∵  ℤ𝑚 × ℤ𝑛 has 𝑚𝑛 elements. 

Consider the cyclic subgroup of ℤ𝑚 × ℤ𝑛 generated by the element (1,1).The order of this 

cyclic subgroup is the smallest power of (1,1),that gives the identity (0,0). Here taking a power 

of (1,1) in our additive notation will involve adding (1,1) to itself repeatedly. 

Consider (1,1) + (1,1)+, … … . , +(1,1) 

If we add first coordinates 𝑚 times , we get zero. 

∴ order of first coordinate = 𝑚. 

Similarly , Order of second coordinate = 𝑛. 

The two coordinates together become zero. If we add them 𝑙𝑐𝑚(𝑚, 𝑛) times. 

∵ gcd(𝑚, 𝑛) = 1, We get the 𝑙𝑐𝑚 = 𝑚𝑛. 

i.e. (1,1) generates a cyclic subgroup of ℤ𝑚 ×  ℤ𝑛 of order 𝑚𝑛 , which is the order of the whole 

group. 

⇒  ℤ𝑚 ×  ℤ𝑛 =< (1,1) > 



10 
 

⇒  ℤ𝑚 ×  ℤ𝑛 is cyclic. 

 

Corollary 

The group ⨅𝑖=1
𝑛 ℤ𝑚𝑖

 is cyclic and isomorphic to ℤ𝑚1𝑚2…….𝑚𝑛
 if and only if the numbers 𝑚𝑖 for 

𝑖 = 1,2, … … . , 𝑛 are such that the 𝑔𝑐𝑑 of any two of them is 1. 

 

Example  

If 𝑛 is written as a product of powers of distinct prime numbers , as in , 

𝑛 = (𝑝1)𝑛1 . (𝑝2)𝑛2 … … . (𝑝𝑛)𝑛𝑟 

Then ℤ𝑛 is isomorphic to ℤ(𝑝1)𝑛1 × ℤ(𝑝2)𝑛2 × … … .× ℤ(𝑝𝑟)𝑛𝑟. 

In particular , ℤ72 is isomorphic to ℤ8 × ℤ9. 

Consider set of integers ℤ, cyclic subgroup of ℤ is of the form 𝑛ℤ , 𝑛 ∈ ℤ. Consider 2ℤ and 3ℤ , 

then < 2 > ∩ < 3 > = < 6 > 

∴ if we take 𝑟ℤ , 𝑠ℤ of ℤ , then the 𝑙𝑐𝑚(𝑟, 𝑠) =generator of < 𝑟 > ∩ < 𝑠 > 

Using this we can define the 𝑙𝑐𝑚 of the positive integers. 

 

Definition 

Let 𝑟1, 𝑟2, … … . , 𝑟𝑛 be positive integers. Their least common multiple (abbreviated lcm ) is the 

positive generator of the cyclic group of all common multiples of the 𝑟𝑖 , that is the cyclic group 

of all integers divisible by each 𝑟𝑖 for 𝑖 = 1,2, … … . , 𝑛. 
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Theorem 

Let (𝑎1, 𝑎2, … … . , 𝑎𝑛) ∈ ⨅𝑖=1
𝑛 𝐺𝑖.  

If 𝑎𝑖 is of finite order 𝑟𝑖 in 𝐺𝑖 , then the order of (𝑎1, 𝑎2, … … . , 𝑎𝑛) in ⨅𝑖=1
𝑛 𝐺𝑖 is equal to the least 

common multiple of all the 𝑟𝑖. 

 

Proof 

Given,  

order of 𝑎1 = 𝑟1 ⇒ 𝑎1
𝑟1 = 𝑒1 in 𝐺1 

            

order of 𝑎2 = 𝑟2 ⇒ 𝑎2
𝑟2 = 𝑒2 in 𝐺2 

            . 

            . 

            . 

            order of 𝑎𝑛 = 𝑟𝑛 ⇒ 𝑎𝑛
𝑟𝑛 = 𝑒𝑛 in 𝐺𝑛. 

We have to find a power 𝑘 for (𝑎1, 𝑎2, … … . , 𝑎𝑛).  

So that (𝑎1, 𝑎2, … … . , 𝑎𝑛)𝑘 = (𝑒1, 𝑒2, … … . , 𝑒𝑛). 

The power must simultaneously be a multiple of 𝑟1 , multiple of 𝑟2 and so on. But 𝑘 is the least 

positive integers having the above property. 

∴ 𝑘 = 𝑙𝑐𝑚(𝑟1, 𝑟2, … … . , 𝑟𝑛). 

 

Q. Find the order of (8,4,10) in the group ℤ12 × ℤ60 × ℤ24. 

𝑂(8) = 3 in 𝑍12 
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𝑂(4) = 15 in 𝑍60 

𝑂(10) = 12 in 𝑍24 

      𝑂(8,4,10) = 𝑙𝑐𝑚(3,15,12) = 60 

 

Q. Find a generator of ℤ × ℤ2 

ℤ × ℤ2 = {(𝑛, 0), (𝑛, 1): 𝑛 ∈ ℤ} 

(𝑛, 0) = 𝑛(1,0) 

(𝑛, 1) = (𝑛, 0) + (0,1) = 𝑛(1,0) + (0,1) 

∴ ℤ × ℤ2 is generated by {(1,0), (0,1)} 

In general , ℤ × ℤ𝑛 is generated by , 

{(1,0,0, … … . ,0), (0,1,0, … … . ,0), … … . , (0,0, … … . ,1)} 

 

Q. Find the order of (3,10,9) in (ℤ4, ℤ12, ℤ15) 

𝑂(3) = 4 in ℤ4 

𝑂(10) = 6 in ℤ12 

𝑂(9) = 5 in ℤ15 

∴ 𝑂(3,10,9) = 𝑙𝑐𝑚(4,6,5) 

                     = 60 

∴ order of (3,10,9) in ℤ4 × ℤ12 × ℤ15 is 60. 
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CHAPTER-2 

 

FUNDAMENTAL THEOREM OF FINITELY GENERATED ABELIAN 

GROUPS 

Every finitely generated abelian group 𝐺 is isomorphic to a direct product of cyclic groups in the 

form, 

ℤ(𝑝1)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 × ℤ × ℤ × ℤ × … … .× ℤ 

Where the 𝑝𝑖 are primes , not necessarily distinct and the 𝑟𝑖 are positive integers. 

 

Remark 

• The direct product is unique except for possible rearrangement of the factors. 

• The number of factors ℤ is unique and this number is called Betti number. 

Example 

Find all abelian groups , upto isomorphism of order 

 1)8 ,        2)16 ,        3)360 

(1) Order 8 

8 = 1 × 8 

            8 = 2 × 4 = 2 × 22 

            8 = 2 × 2 × 2 

3 non-isomorphic groups are ℤ8, ℤ2 × ℤ4,  

ℤ2 × ℤ2 × ℤ2 
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 (2) Order 16 

16 = 1 × 16 = 1 × 24 

16 = 2 × 8  = 2 × 23 

16 = 4 × 4  = 22 × 22 

16 = 2 × 2 × 2 × 2 

16 = 2 × 2 × 22 

ℤ16, ℤ2 × ℤ8, ℤ4 × ℤ4, ℤ2 × ℤ2 × ℤ2 × ℤ2, ℤ2 × ℤ2 × ℤ4 

(3) Order 360 

360 = 22 ⋅ 32 ⋅ 5 

Possibilities are, 

1)  ℤ8 × ℤ9 × ℤ5 

2)  ℤ2 × ℤ4 × ℤ9 × ℤ5 

3)  ℤ2 × ℤ2 × ℤ2 × ℤ9 × ℤ5 

4)  ℤ8 × ℤ3 × ℤ3 × ℤ5 

5)  ℤ2 × ℤ4 × ℤ3 × ℤ3 × ℤ5 

6)  ℤ2 × ℤ2 × ℤ2 × ℤ3 × ℤ3 × ℤ5 

 

Definition 

A group 𝐺 is decomposable if it is isomorphic to a direct product of two proper non-trivial 

subgroups , otherwise 𝐺 is indecomposable. 
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Example 

ℤ6 is decomposable while ℤ5 is indecomposable. 

ℤ6 is isomorphic to ℤ2 × ℤ3  

ℤ𝑚𝑛 is isomorphic to ℤ𝑚 × ℤ𝑛  , if 𝑚 and 𝑛 are prime. 

 

Theorem 

The finite indecomposable abelian groups are exactly the cyclic groups with order a power of a 

prime. 

Proof 

Let 𝐺 be a finite indecomposable abelian group ∵ 𝐺 is finitely generated , we can apply 

fundamental theorem of finitely generated abelian groups. 

∴ 𝐺 ≅ ℤ(𝑝)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 

∵ 𝐺 is indecomposable and ℤ(𝑝𝑖)𝑟𝑖’s are proper subgroups we get in the above , there is only one 

factor say ℤ(𝑝𝑖)𝑟𝑖  which is cyclic group with order a prime power. 

 

Theorem 

If 𝑚 divides the order of a finite abelian group  , then 𝐺 has a subgroup of order 𝑚. 

Proof 

Given 𝐺 is a finite abelian group. 

∴ we can apply Fundamental Theorem , 
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Hence,  

𝐺 ≅ ℤ𝑝1
𝑟1 × ℤ𝑝2

𝑟2 × … … .× ℤ𝑝𝑛
𝑟𝑛  

Here all primes need not be distinct.  

Then, 

𝑂(𝐺) = 𝑝1
𝑟1 . 𝑝2

𝑟2 … … 𝑝𝑛
𝑟𝑛 

Let 𝑚 is a +𝑣𝑒 integer which divides 𝑂(𝐺). 

0 ≤ 𝑠𝑖 ≤ 𝑟𝑖 By theorem , “ let 𝐺 be a cyclic group with 𝑛 elements and generated by 𝑎. Let     

𝑏 ∈ 𝐺 , 𝑏 = 𝑎𝑠 , then ‘ 𝑏’ generates a cyclic subgroup 𝐻 of 𝐺 containing 
𝑛

𝑑
 elements , where           

𝑑 = gcd(𝑛, 𝑠).” 

𝑝𝑖
𝑟𝑖−𝑠𝑖 generates a cyclic subgroup of ℤ

𝑝
𝑖

𝑟𝑖  having order 
𝑝

𝑖

𝑟𝑖

𝑔𝑐𝑑(𝑝
𝑖

𝑟𝑖 ,𝑝
𝑖

𝑟𝑖−𝑠𝑖)
 

                                                                                       =
𝑝

𝑖

𝑟𝑖

𝑝
𝑖

𝑟𝑖−𝑠𝑖
= 𝑝𝑖

𝑠𝑖 

∴ 𝑂(< 𝑝𝑖
𝑟𝑖−𝑠𝑖 >) = 𝑝𝑖

𝑠𝑖 

i.e. < 𝑝1
𝑟1−𝑠1 >  is a subgroup of ℤ𝑝1

𝑟1  having order 𝑝1
𝑠1. 

< 𝑝2
𝑟2−𝑠2 >  is a subgroup of ℤ𝑝2

𝑟2  having order 𝑝2
𝑠2. 

………………………………………………………… 

< 𝑝𝑛
𝑟𝑛−𝑠𝑛 >  is a subgroup of ℤ𝑝𝑛

𝑟𝑛  having order 𝑝𝑛
𝑠𝑛 . 

∴ < 𝑝1
𝑟1−𝑠1 > × < 𝑝2

𝑟2−𝑠2 > × … … .× < 𝑝𝑛
𝑟𝑛−𝑠𝑛 >   is a subgroup of ℤ𝑝1

𝑟1 × ℤ𝑝2
𝑟2 × … … .× ℤ𝑝𝑛

𝑟𝑛  

having order 𝑝1
𝑠1 ⋅ 𝑝2

𝑠2 ⋅⋅⋅⋅⋅⋅⋅⋅ 𝑝𝑛
𝑠𝑛 = 𝑚. 
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Theorem 

If 𝑚 is a square free integer , that is 𝑚 is not divisible by the square of any prime . Then every 

abelian group of order 𝑚 is cyclic. 

 

Proof 

Let 𝑚 be a square free integer , then 𝑝𝑖⫮ 𝑚 for every 𝑖 greater than 1 for a prime 𝑝.  

Given 𝐺 is a finite abelian group having order 𝑚 , by fundamental theorem , then  

𝐺 ≅ ℤ(𝑝1)𝑟1 × ℤ(𝑝2)𝑟2 × … … .× ℤ(𝑝𝑛)𝑟𝑛 

Then,             

𝑂(𝐺) = 𝑝1
𝑟1 ⋅ 𝑝2

𝑟2 ⋅⋅⋅⋅⋅⋅⋅ 𝑝𝑛
𝑟𝑛 

∵ 𝑂(𝐺) is a square free integer , the only possibility   

𝑟1 = 𝑟2 =  … … . . = 𝑟𝑛 = 1 

Then, 

𝐺 ≅ ℤ𝑝1
× ℤ𝑝2

× … … .× ℤ𝑝𝑛
 

     ≅ ℤ𝑝1,𝑝2,…….,𝑝𝑛
 , which is cyclic. 

 

Example 

15 is a square free integer. So an abelian group of order 15 is cyclic.
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CONCLUSION 

Direct product of groups is the product 𝐺1 × 𝐺2, … … . 𝐺𝑛 ,where  each 𝐺𝑖 is a set. We have 

discussed about definition and some properties related to the direct product of  groups. The 

fundamental theorem of finitely generated abelian group helped us to get a deeper understanding 

about the topic. The theorems gives us complete structural information about abelian group, in 

particular finite abelian group. We have also discussed some examples in order to develope more 

intrest in algebra. 
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INTRODUCTION 

A power series is a type of series with terms involving a variable. Power series 

are often used by calculators and computers to evaluate trigonometric, 

hyperbolic, exponential and logarithm functions. So any application of these 

kind of functions is a possible application of power series. Many interesting and 

important differential equations can be found in power series. 

 

 

. 
  



2 
 

PRELIMINERY 

 

A.  An infinite series of the form   

                                  ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯                                (1) 

       is called a power series in x. The series 

∑  

∞

𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)2 + ⋯ 

       is a power series in x – x0. 

 

B. The series (1) is said to converge at a point x if the limit 

𝑙𝑖𝑚
𝑚→∞

  ∑  

𝑚

𝑛=0

𝑎𝑛𝑥𝑛 

      exists, and in this case the sum of the series is the value of this limit. 

     Radius of convergence: Series in 𝑥 has a radius of convergence 𝑅, where  

      0 ≤ 𝑅 ≤ ∞, with the property that the series converges if |𝑥| < 𝑅 and           

      diverges if |𝑥| > 𝑅. It should be noted that if 𝑅 = 0 then no 𝑥 satisfies            

      |𝑥| < 𝑅, and if 𝑅 = ∞ then no 𝑥 satisfies |𝑥| > 𝑅 

𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
𝑎𝑛

𝑎𝑛+1
|  , if the limit exists. 

 

C. Suppose that (1) converges for |𝑥| < 𝑅 with 𝑅 > 0, and denote its sum  

     by f(x):         

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

     Then f(x) is automatically continuous and has derivatives of all orders for 

      |𝑥| < 𝑅. 
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D.  Let f(x) be a continuous function that has derivatives of all orders for 

      |x|< R with R > 0. f(x) be represented as power series using Taylor’s      

      formula: 

𝑓(𝑥) = ∑  

𝑛

𝑘=0

𝑓(𝑘)(0)

𝑘!
𝑥𝑘 + 𝑅𝑛(𝑥) 

     where the remainder Rn (x) is given by 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑥̅)

(𝑛 + 1)!
𝑥𝑛+1 

     for some point 𝑥̅ between 0 and x.  

 

E.  A function f(x) with the property that a power series expansion of 

      the form 

  

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 

      is valid in some neighbourhood of the point x0 is said to be analytic at 

      x0. In this case the an are necessarily given by 

𝑎𝑛 =
𝑓(𝑛)(𝑥0)

𝑛!
 

      and is called the Taylor series of f(x) at x0. 

 

Analytic functions: A function f defined on some open subset U of R or C is          

called analytic if it is locally given by a convergent power series. This means 

that every a ∈ U has an open neighbourhood V ⊆ U, such that there exists           

a power series with centre a that converges to f(x) for every x ∈ V. 
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CHAPTER 1 

SERIES SOLUTION OF FIRST ORDER EQUATION 

We have studied to solve linear equations with constants coefficient but with 

variable coefficient only specific cases are discussed. Now we turn to these 

latter cases and try to find a general method to solve this. The idea is to assume 

that the unknown function y can be explained into a power series. Our purpose 

in this section is to explain the procedures by showing how it works in the case 

of first order equation that are easy to solve by elementary methods.  

 

Example 1: we consider the equation               

𝑦ʹ = 𝑦 

Consider the above equation as  (1). Assume that y has a power series solution 

of the form 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

Which converges for |x| < R, R > 0 

That is we assume that  𝑦ʹ = 𝑦 has a solution that is analytic at origin. We have 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

                           = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ ⋯ 

then 

𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 

                                     = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ … …. 

            ∴ (1) ⇒ 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 ⋯ 

                       = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

⇒ 𝑎1 = 𝑎0  

 2𝑎2 = 𝑎1 ⇒                                𝑎2 =
𝑎1

2
=

𝑎0

2
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3𝑎3 = 𝑎2 ⇒                               𝑎3 =
𝑎2

3
=

𝑎0

2 ∙ 3
=

𝑎0

3!
 

4𝑎4 = 𝑎3 ⇒                               𝑎4 =
𝑎3

4
=

𝑎0

2 ⋅ 3 ⋅ 4
=

𝑎0

4!
 

∴  we get                                      𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

                                                            = 𝑎0 + 𝑎0𝑥 +
𝑎0

2
𝑥2 +

𝑎0

3!
𝑥3 +

𝑎0

4!
𝑥4 + ⋯ 

                                                            = 𝑎0 (1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ ) 

                                                        𝑦 = 𝑎0𝑒𝑥 

To find the actual function we have 𝑦ʹ = 𝑦 

                                            i.e.,   
𝑑𝑦

𝑑𝑥
= 𝑦  ⇒       

𝑑𝑦

𝑦
= 𝑑𝑥 

integrating  

                                                 log 𝑦 = 𝑥 + 𝑐 

                                          i.e.,        𝑦 = 𝑒𝑥+𝑐 = 𝑒𝑥 ⋅ 𝑒𝑐 

                                                        𝑦 = 𝑎0𝑒𝑥 , where a0 = ec , a constant. 

 

 Example 2: solve 𝑦′ = 2𝑥𝑦. Also find its actual solution. 

 Solution:                                         𝑦′ = 2𝑥𝑦                        (1) 

 Assume that y has a power series of the form 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

Which converges for  |𝑥| < 𝑅, 𝑅 > 0 

We have                                           𝑦 = ∑  

∞

𝑛=0

a𝑛 𝑥𝑛 

                                                        = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

   𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 
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                             = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ 

Then (1) ⇒ 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ =  2𝑥(𝑎0 + 𝑎1𝑥 +𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ ) 

                                                      = 2𝑥𝑎0 + 2𝑥𝑎1𝑥 + 2𝑥𝑎2𝑥2 + 2𝑥𝑎3𝑥3 + ⋯ 

                                                      = 2𝑥𝑎0 + 2𝑎1𝑥2 + 2𝑎2𝑥3 + 2𝑎3𝑥4 + ⋯ … .. 

⇒ 𝑎1 = 0         2𝑎2 = 2𝑎0 ⇒ 𝑎2 =
2𝑎0

𝑧
= 𝑎0 

                        3. 𝑎3 = 2𝑎1 ⇒ 𝑎3 =
2𝑎1

3
= 0 

                         4𝑎4 = 2𝑎2 ⇒ 𝑎4 =
2𝑎2

42
=

𝑎0

2
 

                         5𝑎5 = 2𝑎3 = 0 ⇒ 𝑎5 = 0 

                         6𝑎6 = 2𝑎4 ⇒ 𝑎6 =
2𝑎4

6
=

𝑎4

3
=

𝑎0

2⋅3
=

𝑎0

3!
 

We get, 

            

𝑦  = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯

 = 𝑎0 + 0 + 𝑎0𝑥2 + 0𝑥3 +
𝑎0

2
𝑥4 + ⋯

 = 𝑎0 + 𝑎0𝑥2 +
𝑎0

2
𝑥4 + ⋯

 = 𝑎0 (1 + 𝑥2 +
𝑥4

2!
+

𝑥6

3!
+ ⋯ )

 

                                  𝑦 = 𝑎0𝑒𝑥2
  

To find an actual solution 

                

⇒

                                    𝑦′ = 2𝑥𝑦
𝑑𝑦

𝑑𝑥
= 2𝑥𝑦

                                   
𝑑𝑦

𝑦
= 2𝑥 ⋅ 𝑑𝑥

                              log 𝑦 = 𝑥2 + 𝑐

𝑦 = 𝑒𝑥2
+ 𝑐

⇒ 𝑦 = 𝑎0𝑒𝑥2
, where 𝑎0 = 𝑒𝑐

 

 



7 
 

Example 3: Consider 𝑦 = (1 + 𝑥)𝑝 where p is an arbitrary constant. Construct a 

differential equation from this and then find the solution using power series 

method. 

 Solution 

             First, we construct a differential equation 

                         i.e. 𝑦 = (1 + 𝑥)𝑝 

                              𝑦′ = 𝑝(1 + 𝑥)𝑝−1 =
𝑝(1+𝑥)𝑝

1+𝑥
=

𝑝𝑦

1+𝑥
 

                            ∴ (1 + 𝑥)𝑦′ = 𝑝𝑦,   𝑦(0) = 𝑟 

Assume that y has a power series solution of the form, 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

                                  = 𝑎0 + 𝑎1𝑥 + 𝑎̇2𝑥2 + ⋯ … … 

Which converges for |𝑥| < 𝑅̇,    𝑅 > 0 

                                𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ … … .. 

    𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 

                              = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ 

                             Then (1 + 𝑥)𝑦′ = 𝑝𝑦  

⇒ (1 + 𝑥)𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ = 𝑝(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )  

⇒ (𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ ) + (𝑎1𝑥 + 2𝑎2𝑥2 + 3𝑎3𝑥3 + ⋯ )  

                                                           = 𝑎0𝑝 + 𝑎1𝑝𝑥 + 𝑎2𝑝𝑥2 + ⋯ 

Equating the coefficients of 𝑥, 𝑥2, … 

                            𝑎1 = 𝑎0𝑝  i.e.  𝑎1 = 𝑝, (since 𝑎0 = 1) 

       ⇒ 2𝑎2 = 𝑎1(p − 1) 

               𝑎2 =
𝑎1(p − 1)

2
=

𝑎0𝑃(𝑝 − 1)

2
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                3𝑎3 + 2𝑎2 = 𝑎2𝑝
𝑠𝑎3 = 𝑎2𝑝 − 2𝑎2

                          = 𝑎2(𝑝 − 2)

𝑎3 =
𝑎2(𝑝 − 2)

3
=

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)

2 ⋅ 3

 

4𝑎4 + 3𝑎3 = 𝑎3𝑝
4𝑎4 = 𝑎3𝑝 − 3𝑎3

= 𝑎3(𝑝 − 3)

𝑎4 =
𝑎3(𝑝 − 3)

4
=

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

2 ⋅ 3 ⋅ 4

 

∴ we get, 

           𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 

= 𝑎0 + 𝑎0𝑝𝑥 +
𝑎0𝑝(𝑝 − 1)

2
𝑥2 +

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)

2 ⋅ 3
𝑥3 + ⋯ … 

              = 1 + 𝑝𝑥 +
𝑝(𝑝 − 1)

2!
𝑥2 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
𝑥3 + 

                 
𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

4!
𝑥4 + ⋯ +

𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − (𝑛 − 1))

𝑛!
𝑥𝑛 

Since the initial problem y(0) = 1 has one solution the series converges for |x|<1 

So this is a power solution,  

(1 + 𝑥)𝑝 = 1 + 𝑝𝑥 +
𝑝(𝑝 − 1)

2!
𝑥2 + ⋯ +

𝑝(𝑝 − 1) ⋯ (𝑝 − (𝑛 − 1))

𝑛!
𝑥𝑛 

Which is binomial series. 

 

Example 4: Solve the equation  𝑦′ = 𝑥 − 𝑦, 𝑦 (0) = 0   

  Solution: Assume that y has a power series solution of the form 

𝑦 = ∑  

∞

𝑛=0

an 𝑥𝑛 

which converges for |𝑥| < 𝑅, 𝑅 > 0 

                           
 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯

𝑦′ = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯
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 Now 𝑦′ = 𝑥 − 𝑦

(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ ) = 𝑥 − (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )
 

Equating the coefficients of 𝑥, 𝑥2,  

𝑎1     = −𝑎0 = 0,      Since     𝑦(0) = 0
2𝑎2     = 1 − 𝑎1        
    = 1 − 0    

 

                                      

⇒ 𝑎2 =
1

2
   3𝑎3 = −𝑎2

      𝑎3 =
−𝑎2

3
= −

1

2 ⋅ 3

 

                                          4𝑎4 = −𝑎3

⇒ 𝑎4 =
1

2 ⋅ 3 ⋅ 4

 

                                           ∴ 𝑦 = 0 + 0 +
𝑥2

2!
−

𝑥3

3!
+

𝑥4

4!
− ⋯ … … 

                                                   
= (1 − 𝑥 +

𝑥2

2!
−

𝑥3

3!
+ ⋯ ) + 𝑥 − 1

= 𝑒−𝑥 + 𝑥 − 1

 

By direct method  

𝑦′ = 𝑥 − 𝑦
𝑑𝑦

𝑑𝑥
= 𝑥 − 𝑦 ⇒

𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑥

                                       ( 
𝑑𝑦

𝑑𝑥
+ 𝑝𝑦 = 𝑄 𝑓𝑜𝑟𝑚) 

here 𝑃(𝑥) = 1,  integrating factor 

= 𝑒∫ 𝑝(𝑥)⋅𝑑𝑥

= 𝑒𝑥

 

                     

∴ 𝑦𝑒𝑥 = ∫ 𝑥𝑒𝑥 ⋅ 𝑑𝑥

𝑦𝑒𝑥 = 𝑥 ⋅ 𝑒𝑥 − ∫ 𝑒𝑥 ⋅ 𝑑𝑥
= 𝑥𝑒𝑥 − 𝑒𝑥

𝑦𝑒𝑥 = 𝑒𝑥(𝑥 − 1) + 𝑐

 

𝑦 =
𝑒𝑥(𝑥 − 1) + 𝑐

𝑑𝑥
= 𝑥 − 1 +

𝑐

𝑒𝑥
= 𝑐𝑒−𝑥 + (𝑥 − 1)

  ∴ 𝑦 = (𝑥 − 1) + 𝑐𝑒−𝑥
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CHAPTER 2 

SECOND ORDER LINEAR EQUATION, ORDINARY POINTS 

 

Consider the general homogeneous second order linear equation, 

                                    𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0                    (1) 

As we know, it is occasionally possible to solve such an equation in terms of 

familiar elementary functions. This is true, for instance, when P(x) and Q(x) 

are constants, and in a few other cases as well. For the most part, however, 

the equations of this type having the greatest significance in both pure and 

applied mathematics are beyond the reach of elementary methods, and can 

only be solved by means of power series. 

P(x) and Q(x) are called coefficients of the equation. The behaviour of its 

solutions near a point x0 depends on the behaviour of its coefficient functions 

P(x) and Q(x) near this point. we confine ourselves to the case in which P(x) and 

Q(x) are well behaved in the sense of being analytic at x0, which means that 

each has a power series expansion valid in some neighbourhood of this point. In 

this case x0 is called an ordinary point of equation (1). Any point that is not an 

ordinary point of (1) is called a singular point. 

Consider the equation, 

                                                          𝑦′′ + 𝑦 = 0                                     (2) 

the coefficient functions are P(x) = 0 and Q(x) = 1, These functions are analytic 

at all points, so we seek a solution of the form, 

                                 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 + ⋯                    (3)       

Differentiating (3) we get, 

              𝑦′ = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ + (𝑛 + 1)𝑎𝑛+1𝑥𝑛 + ⋯          (4)   
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And 

 𝑦′′ = 2𝑎2 + 2 ⋅ 3𝑎3𝑥 + 3 ⋅ 4𝑎4𝑥2 + ⋯ + (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 + ⋯  (5) 

If we substitute (5) and (3) into (2) and add the two series term by term, we get 

𝑦′′ + 𝑦 =
(2𝑎2 + 𝑎0) + (2 ⋅ 3𝑎3 + 𝑎1)𝑥 + (3 ⋅ 4𝑎4 + 𝑎2)𝑥2 +

  (4 ⋅ 5𝑎5 + 𝑎3)𝑥3  + ⋯ + [(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑎𝑛]𝑥𝑛 + ⋯
= 0 

and equating to zero the coefficients of successive powers of x gives 

2𝑎2 + 𝑎0 = 0, 2 ⋅ 3𝑎3 + 𝑎1 = 0, 3 ⋅ 4𝑎4 + 𝑎2 = 0 

4 ⋅ 5𝑎5 + 𝑎3 = 0, … … , (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑎𝑛 = 0, … 

By means of these equations we can express an in terms of a0 or a0, according 

as n is even or odd: 

𝑎2 = −
𝑎0

2
, 𝑎3 = −

𝑎1

2 ⋅ 3
, 𝑎4 = −

𝑎2

3 ⋅ 4
=

𝑎0

2 ⋅ 3 ⋅ 4
 

𝑎5 = −
𝑎3

4 ⋅ 5
=

𝑎1

2 ⋅ 3 ⋅ 4 ⋅ 5
, ⋯ 

With these coefficients, (3) becomes 

                    𝑦 = 𝑎0 + 𝑎1𝑥 −
𝑎0

2
𝑥2 −

𝑎1

2 ⋅ 3
𝑥3 +

𝑎0

2 ⋅ 3 ⋅ 4
𝑥4 +

𝑎1

2 ⋅ 3 ⋅ 4 ⋅ 5
𝑥5 − ⋯ 

                        = 𝑎0 (1 −
𝑥2

2!
+

𝑥4

4!
− ⋯ ) + 𝑎1 (𝑥 −

𝑥3

3!
+

𝑥5

5!
− ⋯ )            (6) 

  𝑖. 𝑒,            𝑦 = 𝑎0cos 𝑥 + 𝑎1sin 𝑥 

Since each of the series in the parenthesis converges for all x. This implies the 

series (2) for all x. 

 

Solve the legenders equation, 

(1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0 

Solution 

Consider   (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0  as equation (1) 

Assume that y has a power series solution of the form 

𝑦 = ∑𝑎𝑛𝑥𝑛 
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Which converges |𝑥| < 𝑅, 𝑅 > 0 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

 

       

2𝑥𝑦′ = ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛

𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

𝑥2𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛

 

put 𝑛 = 𝑛 + 2    (Since 𝑦′′ is not 𝑥𝑛 form ) 

⇒ ∑  

∞

𝑛=0

(𝑛 + 2)(𝑛 + 2 − 1)𝑎𝑛+2𝑥𝑛+2−2

∴ 𝑦′′ = ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛

 

Now (1) ⇒              𝑦′′ − 𝑥2𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0 

⇒ ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 − ∑𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 − ∑2𝑛𝑎𝑛𝑥𝑛 + ∑𝑝(𝑝 + 1)𝑎𝑛𝑥𝑛 = 0  

⇒ ∑  

∞

𝑛=0

[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 𝑛(𝑛 − 1)𝑎𝑛 − 2𝑛𝑎𝑛 + 𝑝(𝑝 + 1)𝑎𝑛)𝑥𝑛] = 0  

                                                                                         for n = 0,1,2,3……. 

⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 𝑛(𝑛 − 1)𝑎𝑛 − 2𝑛𝑎𝑛 + 𝑝(𝑝 + 1)𝑎𝑛 = 0 

⇒ 𝑎𝑛+2 =
[𝑛(𝑛 − 1) + 2𝑛 − 𝑝(𝑝 + 1)]

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 

=
(𝑛2 − 𝑛 + 2𝑛 − 𝑝2 − 𝑝)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)

=
(𝑛2 + 𝑛 − 𝑝2 − 𝑝)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)
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∴ 𝑎𝑛+2 =
−(𝑝 − 𝑛)(𝑝 + 𝑛 + 1)

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 , 𝑛 = 0,1,2 …

      
This is an Recursion formula 

 

 

 put 𝑛 = 0, 𝑎2 =
−𝑝(𝑝 + 1)

1 ⋅ 2
𝑎0

𝑛 = 1, 𝑎3 =
−(𝑝 − 1)(𝑝 + 2)

2 ⋅ 3
⋅ 𝑎1

        𝑛 = 2,      𝑎4 =
−(𝑝 − 2)(𝑝 + 3)

3𝑖4
𝑎2

 =
𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
𝑎0

 

         

𝑛 = 3, 𝑎5 =
−(𝑝 − 3)[𝑝 + 4)

4 ⋅ 5
𝑎3

=
(𝑝 − 1)(𝑝 − 3)(𝑝 + 2)(𝑝 + 4)

5!
𝑎1

𝑛 = 4, 𝑎6 =
−(𝑝 − 4)(𝑝 + 5)

5 ⋅ 6
𝑎4

=
−𝑝(𝑝 − 2)(𝑝 − 4)(𝑝 + 1)(𝑝 + 3)(𝑝 + 5)

6!
𝑎0

 

        
𝑛 = 5,          𝑎7 = −

(𝑝 − 5)(𝑝 + 6)

6 ⋅ 7
𝑎5

= −
(𝑝 − 1)(𝑝 − 3)(𝑝 − 5)(𝑝 + 2)(𝑝 + 4)(𝑝 + 6)

7!
𝑎1

 

 

               

𝑦 = 𝑎0 [1 −
𝑝(𝑝 + 1)

2!
𝑥2 +

𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
𝑥4

−
𝑝(𝑝 − 2)(𝑝 − 4)(𝑝 + 1)(𝑝 + 3)(𝑝 + 5)

6!
𝑥6 + ⋯ ]

+𝑎1 [𝑥 −
(𝑝 − 1)(𝑝 + 2)

3!
𝑥3 +

(𝑝 − 1)(𝑝 − 3)(𝑝 + 2)(𝑝 + 4)

5!
𝑥5

−
(𝑝 − 1)(𝑝 − 3)(𝑝 − 5)(𝑝 + 2)(𝑝 + 4)(𝑝 + 6)

7!
𝑥7 + ⋯ ]
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Find the general solution of (1 + 𝑥2)𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0 in terms of power 

series in 𝑥. Can you express this solution by means of elementary functions? 

Solution 

Consider the equation   (1 + 𝑥2)𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0  as equation (1) 

Assume that y has a power series solution of the form 

𝑦 = ∑𝑎𝑛𝑥𝑛 

Which converges |𝑥| < 𝑅, 𝑅 > 0 

         𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

       𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

 

2𝑥𝑦′ = ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛

                   𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

 

                                    (1 + 𝑥2)𝑦′′ = 𝑦′′ + 𝑥2𝑦′′ 

                                                     𝑥2𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 

        Now 𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 

 

 put 𝑛 = 𝑛 + 2

⇒                                                           ∑  

∞

𝑛=0

(𝑛 + 2)(𝑛 + 2 − 1)𝑎𝑛 + 2𝑥𝑛+2=2

                                        = ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛
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(1) ⇒ ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 + ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛

+ ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛 − ∑  

∞

𝑛=0

2𝑎𝑛𝑥𝑛 = 0

 

⇒ ∑[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 + 2𝑛𝑎𝑛 − 2𝑎𝑛)𝑥𝑛] = 0 

            ⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 + 2𝑛𝑎𝑛 − 2𝑎𝑛 = 0 

 

𝑎𝑛+2 =
[−𝑛(𝑛 − 1) − 2𝑛 + 2]

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛

=
(−𝑛2 + 𝑛 − 2𝑛 + 2)

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛

 

 

                 

 put 𝑛 = 0, 𝑎2 =
2

1 ⋅ 2
𝑎0 =

2𝑎0

2!
= 𝑎0

𝑛 = 1, 𝑎3 =
(1 − 1 − 2 + 2)

2 ⋅ 3
𝑎1 = 0

𝑛 = 2, 𝑎4 =
2 − 4 − 4 + 2

3 ⋅ 4
𝑎2     =

−4

3 ⋅ 4
𝑎0 =

−𝑎0

3

 

                         
𝑛 = 3, 𝑎5 =

3 − 9 − 16 + 2

4.5
𝑎3   = 0

𝑛 = 4, 𝑎6 =
4 − 16 − 8 + 2

5.6
𝑎4   =

−3

5
𝑎4   =

3𝑎0

3.5
=

𝑎0

5

 

 

                                            

∴ 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯

= 𝑎0 + 𝑎1𝑥 + 𝑎0𝑥2 −
𝑎0

3
𝑥4 +

𝑎0

5
𝑥6 … .

= 𝑎0 [1 + 𝑥2 −
𝑥4

3
+

𝑥6

5
− ⋯ ] + 𝑎1𝑥

= 𝑎0 [1 + 𝑥 (𝑥 −
𝑥3

3
+

𝑥5

5
⋯ )] + 𝑎1𝑥

= 𝑎0(1 + 𝑥tan−1 𝑥) + 𝑎1𝑥
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Consider the equation   𝑦′′ + 𝑥𝑦′ + 𝑦 = 0 

(a) Find its general solution     𝑦 = ∑𝑎𝑛𝑥𝑛    in the form                                                        

𝑦 = 𝑎0𝑦1(𝑥) + 𝑎1𝑦2(𝑥) where 𝑦1(𝑥) and 𝑦2(𝑥) are power series 

(b) use the ratio test to verify that the two series 𝑦1(𝑥) and 𝑦2(𝑥) converges        

.      for all x. 

Solution: 

 Given              𝑦′′ + 𝑥𝑦′ + 𝑦 = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1) 

Assume that y has a power series solution the form ∑a𝑛𝑥𝑛 which converges 

for |𝑥|     𝑅 > 0 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ = ∑  

∞

𝑛=1

𝑛 ⋅ 𝑎𝑛𝑥𝑛−1

𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

= ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛

 

                               𝑥𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛 

(1) ⇒ ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)a𝑛+2𝑥𝑛 + ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛 + ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 0
 

                   ⇒ ∑[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛𝑎𝑛 + 𝑎𝑛)𝑥𝑛] = 0 

                   ⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛𝑎𝑛 + 𝑎𝑛 = 0 

                   ⇒ 𝑎𝑛+2 =
(−𝑛 − 1)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)
=

−𝑎𝑛

𝑛 + 2
  

put         𝑛 = 0, 𝑎2 = −
𝑎0

2

                               𝑛 = 1, 𝑎3 =
−2𝑎1

2 ⋅ 3
=

−𝑎1

3
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𝑛 = 2,     𝑎4 =
−3𝑎2

3 ⋅ 4
=

−𝑎2

4
=

𝑎0

8

𝑛 = 3,     𝑎5 =
−4𝑎3

4 ⋅ 5
=

𝑎1

15

𝑛 = 4,     𝑎6 =
−5𝑎4

5 ⋅ 6
=

−𝑎0

48

 

∴  we get              𝑦 = 𝑎0 + 𝑎1𝑥 + −
𝑎0

2
𝑥2 −

𝑎1

3
𝑥3 +

𝑎0

8
𝑥4 +

𝑎1

15
𝑥5 −

𝑎0

48
𝑥6 + ⋯

  

                                   = 𝑎0 [1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥6

2 ⋅ 4 ⋅ 6
+ ⋯ ] + 𝑎1 [𝑥 −

𝑥3

3
+

𝑥5

3.5
+ ⋯ ]

 

𝑤ℎ𝑒𝑟𝑒          𝑦1(𝑥) = 1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥̇2

2 ⋅ 4 ⋅ 6
+ 

                      𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

𝑥5

3 ⋅ 5
+ ⋯ 

    

(b)           𝑦1(𝑥) = 1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥6

2 ⋅ 4 ⋅ 6
+ ⋯ 

 

                         𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
𝑎𝑛

𝑎𝑛+1
| 

                             = 𝑙𝑖𝑚
𝑛→∞

  |
(−1)𝑛

2 ⋅ 4 ⋅ (2𝑛)
/

(−1)𝑛+1

2 ⋅ 4 ⋅⋅ (2𝑛 + 2)
| 

                             = 𝑙𝑖𝑚
𝑛→∞

  |
2(𝑛 + 1)

−1
| 

                             = 𝑙𝑖𝑚
𝑛→∞

 | − 2𝑛(1 +
1

𝑛
)| = ∞ 

                            
∴ 𝑦1(𝑥) converges for all 𝑥

 

                𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

𝑥5

3 ⋅ 5
− ⋯ 
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                    𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
(−1)𝑛

3 ⋅ 5 ⋯ (2𝑛 + 1)

(−1)𝑛+1

3 ⋅ 5 ⋅ ⋯ (2𝑛 + 3)
⁄ | 

                        = 𝑙𝑖𝑚
𝑛→∞

  |
(−1) ⋅ 3 ⋅ 5 ⋯ (2𝑛 + 1)(2𝑛 + 3)

3 ⋅ 5 ⋯ ⋅ (2𝑛 + 1)
| 

                        = 𝑙𝑖𝑚
𝑛→∞

 |(−1)𝑛(2 + 3/𝑛)| = ∞ 

                       
∴ 𝑦2(𝑥) converges for all 𝑥

 

 

 

REGULAR SINGULAR POINTS 

A singular point 𝑥0 of equation 

𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0 

is said to be regular if the functions (𝑥 − 𝑥0)𝑃(𝑥) and (𝑥 − 𝑥0)2𝑄(𝑥) are 

analytic, and irregular otherwise. Roughly speaking, this means that the 

singularity in 𝑃(𝑥) cannot be worse than 1/(𝑥 − 𝑥0), and that in 𝑄(𝑥) cannot 

be worse than 1/(𝑥 − 𝑥0)2.  

If we consider Legendre’s equation in the form 

𝑦′′ −
2𝑥

1 − 𝑥2
𝑦′ +

𝑝(𝑝 + 1)

1 − 𝑥2
𝑦 = 0 

it is clear that x = 1 and x = −1 are singular points. The first is regular because 

(𝑥 − 1)𝑃(𝑥) =
2𝑥

𝑥 + 1
 and (𝑥 − 1)2𝑄(𝑥) = −

(𝑥 − 1)𝑝(𝑝 + 1)

𝑥 + 1
 

are analytic at x = 1, and the second is also regular for similar reasons. 

Example: Bessel’s equation of order p, where p is a nonnegative constant: 

𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 𝑝2)𝑦 = 0 

If this is written in the form 

𝑦′′ +
1

𝑥
𝑦′ +

𝑥2 − 𝑝2

𝑥2
𝑦 = 0, 

it is apparent that the origin is a regular singular point because𝑥𝑃(𝑥) = 1 and 

𝑥2𝑄(𝑥) = 𝑥2 − 𝑝2 are analytic at x = 0.  
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CONCLUSION 

The purpose of this project gives a simple account of series solution of first 

order equation, second order linear equation, ordinary points. The study of these 

topics given excellent introduction to the subject called ‘POWER SERIES’ 

we used application of  power series extensively throughout this project. We 

take it for granted that most readers are reasonably well acquainted with these 

series from an earlier course in calculus. Nevertheless, for the benefit of those 

whose familiarity with this topic may have faded slightly, we presented a brief 

review of the main facts of power series. 
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INTRODUCTION

This chapter gives an introduction to the theory of normed linear spaces. A skeptical reader may
wonder why this topic in pure mathematics is useful in applied mathematics. The reason is quite
simple: Many problems of applied mathematics can be formulated as a search for a certain
function, such as the function that solves a given differential equation. Usually the function
sought must belong to a definite family of acceptable functions that share some useful properties.
For example, perhaps it must possess two continuous derivatives. The families that arise
naturally in formulating problems are often linear spaces. This means that any linear combination
of functions in the family will be another member of the family. It is common, in addition, that
there is an appropriate means of measuring the “distance” between two functions in the family.
This concept comes into play when the exact solution to a problem is inaccessible, while
approximate solutions can be computed. We often measure how far apart the exact and
approximate solutions are by using a norm. In this process we are led to a normed linear space,
presumably one appropriate to the problem at hand. Some normed linear spaces occur over and
over again in applied mathematics, and these, at least, should be familiar to the practitioner.
Examples are the space of continuous functions on a given domain and the space of functions
whose squares have a finite integral on a given domain.
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PRELIMINARIES

1) LINEAR SPACES

We introduce an algebraic structure on a set and study functions on X which are well behaved𝑋
with respect to this structure. From now onwards , K will denote either R , the set of all real
numbers or C, the set of all complex numbers. For k C , Re k and Im k will denote the  real and∈
imaginary part of k.

A linear space(or a vector space) over K is a non-empty set along with a function𝑋
, called addition and a function : K called scalar multiplication, such+  :  𝑋 × 𝑋 → 𝑋 · × 𝑋 → 𝑋

that for all and K , we have𝑥 ,  𝑦 ,  𝑧 ∈ 𝑋  𝑘 ,  𝑙 ∈

𝑥 + 𝑦 = 𝑦 + 𝑥

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧

∃0∈𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + 0 = 𝑥,

∃ − 𝑥 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + (− 𝑥) = 0 ,

,𝑘 · (𝑥 + 𝑦) = 𝑘 · 𝑥 + 𝑘 · 𝑦

(𝑘 + 𝑙)⋅𝑥 = 𝑘 · 𝑥 + 𝑙 · 𝑥,

(𝑘𝑙)⋅𝑥 = 𝑘 · (𝑙 · 𝑥),

1⋅𝑥 = 𝑥.

We shall write in place of . We shall also adopt the following notations. For𝑘𝑥 𝑘 · 𝑥
K and subsets of ,𝑥, 𝑦 ∈ 𝑋, 𝑘 ∈ 𝐸, 𝐹 𝑋

𝑥 + 𝐹 = {𝑥 + 𝑦: 𝑦 ∈ 𝐹},

`𝐸 + 𝐹 = {𝑥 + 𝑦: 𝑥 ∈ 𝐸, 𝑦 ∈ 𝐹},

𝑘𝐸 = {𝑘𝑥: 𝑥 ∈ 𝐸}.

2) BASIS

A nonempty subset of is said to be a subspace of if whenever and𝐸 𝑋 𝑋 𝑘𝑥 + 𝑙𝑦 ∈ 𝐸 𝑥, 𝑦 ∈ 𝐸
K . If , then the smallest subspace of containing is𝑘, 𝑙 ∈ ∅≠𝐸 ⊂ 𝑋 𝑋 𝐸
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𝑠𝑝𝑎𝑛⁡𝐸 = 𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
: 𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 ,  𝑘

1
, …, 𝑘

𝑛
∈ 𝐾{ }

It is called the span of . If span , we say that spans . A subset of is said to be𝐸 𝐸 = 𝑋 𝐸 𝑋 𝐸 𝑋
linearly independent if for all and K , the equation𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

implies that It is called linearly dependent if it is not𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

1
= ⋯ = 𝑘

𝑛
= 0.

linearly independent, that is, if there exist and K such that𝑥
1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

, where at least one is nonzero.𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

𝑗

A subset E of X is called a Hamel basis or simply basis for X if span of E = X and E is
linearly independent .

3) DIMENSION

If a linear space has a basis consisting of a finite number of elements , then X is called finite𝑋
dimensional and the number of elements in a basis for is called the dimension of , denoted as𝑋 𝑋
dimX . Every basis for a finite dimensional linear space has the same (finite) number of elements
and hence the dimension is well-defined. The space is said to have zero dimension. Note that{0}
it has no basis !

If a linear space contains an infinite linearly independent subset, then it is said to be infinite
dimensional.

4)METRIC SPACE

We introduce a distance structure on a set and study functions on which are well-behaved𝑋 𝑋
with respect to this structure.

A metric on a nonempty set is a function R𝑑 𝑋 𝑑: 𝑋 × 𝑋 →
such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

d(x, y) 0 and d(x , y) = 0 iff x=y≥

d(y , x) = d(x , y)

d(x , y) d(x , z) + d(z , y) .≤

The last condition is known as the triangle inequality. A metric space is a nonempty set along𝑋
with a metric on it.
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5)CONTINUOUS FUNCTIONS

Roughly speaking, a function from a metric space to a metric space is continuous if it sends
‘nearby’ points to ‘nearby’ points. If and are metric spaces with metrics and respectively,𝑋 𝑌 𝑑 𝑒
then a function is said to be continuous at if for every 0 , there is some𝐹: 𝑋 → 𝑌 𝑥

0
∈ 𝑋 ϵ⟩

(possibly depending on and ) such that for all satisfyingδ > 0 ϵ 𝑥
0

𝑒 𝐹(𝑥), 𝐹 𝑥
0( )( ) < ϵ 𝑥 ∈ 𝑋

. Further, is said to be continuous on if it is continuous at every point of It is𝑑 𝑥, 𝑥
0( ) < δ 𝐹 𝑋 𝑋.

easy to see that is continuous on if and only if the set F -1(E) is open in X whenever the set E𝐹 𝑋
is open inY. Also , this happens iff F(xn) F(x) in Y whenever xn x in X.→ →

6) UNIFORM CONTINUITY

We note that a continuous function is, in fact, uniformly𝐹: 𝑇 → 𝑆
continuous, that is, for every , there exists someϵ > 0 δ > 0

such that whenever . This can be seen as follows. Let . By𝑒 𝐹(𝑡), 𝐹(𝑢( )) < ϵ 𝑑 𝑡, 𝑢( ) < δ 𝑡 ∈ 𝑇

the continuity of at , there is some , such that whenever𝐹 𝑡 ∈ 𝑇 δ
𝑡

𝑒 𝐹(𝑡), 𝐹 𝑢( )( ) < ε
2

.𝑑 𝑡, 𝑢( ) < δ
𝑡

7) FIELD

A ring is a set R together with two binary operations + and ( which we call addition and·
multiplication ) such that the following axioms are satisfied .

➢ R is an abelian group with respect to addition
➢ Multiplication is associative
➢ the left distributive law a(b + c) = (a b) + (a c) and the right distributive∀𝑎 , 𝑏, 𝑐 ∈ 𝑅 · ·

law (a + b)c = (a c) + (b c) , hold .· ·

A field is a commutative division ring
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CHAPTER 1

NORMED LINEAR SPACE

Let X be a linear space over K .  A norm on X is the function || || from to R such that𝑋 ∀
x,y X and k K ,∈ ∈

and  || || = 0  if and only if x = 0  ,||𝑥||≥0 𝑥

||x + y|| ||x|| + ||y|| ,≤

||kx|| =|k| ||x|| .

A norm is the formalization and generalization to real vector spaces of the intuitive
notion of “ length” in the real world .

A normed space is a linear space with norm on it .

For x and y in X , let
d(x,y) = ||x - y||

Then d is a metric on X so that (X,d) is a metric space , thus every normed space is a metric
space

➢ Every normed linear space is a metric space . But converse may not be true .

Example :

d(x,y) = , x , y X
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦| ∀ ∈

||x - y|| =⇒
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦|

||z||  = , z = x - y X⇒  
|𝑧|

1 + |𝑧| ∈
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|| z||  =α
|α𝑧|

1 +|α𝑧|

=
|α| |𝑧|

1 + |α| |𝑧|

= | |α
|𝑧|

1 + |α| |𝑧|( )
| | ||z|| .≠ α

➢ Result

Let X be a normed linear space . Then ,

| ||x|| - ||y|| | ||x - y|| , x , y X≤ ∀ ∈

Proof :

||x|| = || ( x - y ) + y|| ||x - y|| + ||y||≤

||x|| - ||y|| ||x - y|| (1)⇒ ≤ →

x y↔

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y|| (2)⇒ ≤  →

From (1) and (2)

|||x|| - ||y||| ||x - y||≤  

➢ Norm is a continuous function

Let xn x , as n→ → ∞
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xn - x 0 as n ∞⇒ → →

||xn - x|| 0 as n ∞⇒ → →

| ||xn|| - ||x|| | ||xn - x|| 0 as n ∞≤ → →

||xn|| - ||x|| 0 , as n ∞⇒ → →

||x|| is continuous⇒

➢ Norm is a uniformly continuous function

We have , || || :X R . Let x,y X and > 0→ ∈  ε

Then ||x|| = ||x - y + y ||

||x - y|| + ||y||                               ≤

||x|| - ||y|| ||x - y|| )        ⇒ ≤ → (1

Interchanging x and y ,

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y||⇒ ≤

||x|| - ||y|| - ||x - y|| 2)⇒  ≥ → (

Combining (1) and (2)

- ||x - y|| ||x|| - ||y|| ||x - y||≤ ≤

That is ,

| ||x ||- ||y|| | ||x - y||≤

Take , then whenever ||x - y|| < , | ||x|| -|| y|| |<δ = ε δ  ε
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Therefore || || is a uniformly continuous function .

➢ Continuity of addition and scalar multiplication

To show that + : X X X and : K X X are continuous functions.× → · × →

Let (x,y) X X . To show that + is continuous at (x ,y) , that is ,  to show∈  ×
that for each (x,y) X X if xn x and yn y in X , then∈ × → →

+(xn , yn) +(x , y) ;→

That is ,
xn + yn x + y .→

Consider
||( xn + yn) - (x + y )|| = ||xn - x + yn - y||

||xn - x|| + ||yn - y||≤

Given xn x and yn y , for each , N1→ → ϵ > 0 ∃ ∋

||xn - x|| < n N1 ,   and N2
ε
2 ∀ ≥ ∃ ∋

||yn - y|| < n N2
ε
2 ∀ ≥

\

Take N = max { N1, N2}

Then ||xn - x|| < and ||yn - y|| < n Nε
2

ε
2 ∀ ≥

Therefore ||(xn + yn) - (x + y)|| + = n N≤ ε
2

ε
2 ε ∀ ≥

That is , xn + yn x + y→

Now to show that : K X X is continuous· × →

Let (k , x) K X∈ ×

13



To show that if kn k and xn x , then knxn kx→ → →

Since kn k   , > 0 N1 |kn - k| < n N1→ ∀ ε ∃ ∋  ε
2

∀ ≥

Since xn x   , > 0 N2 ||xn - x|| < n N2→ ∀ ε ∃ ∋  
ε
2 ∀ ≥

Consider ||knxn - kx|| = ||knxn - kx + xnk - xnk ||

= ||xn (kn - k) + k(xn - x)||

||xn(kn - k)|| + ||k(xn - x)||≤

=  ||xn|| |kn- k| +  |k| ||xn - x||

||xn|| + |k|≤ ε
2

ε
2

∴   knxn kx→

➢ Examples of normed space

1)   Spaces Kn (K = R or C)

For n = 1 ,  the absolute value of function | | is a norm on K , since k K∀ ∈

We have ,

||k|| = ||k || = |k| ||1|| , by definition .· 1

But ||1|| is a positive  scalar .

∴ ||k|| is a positive scalar multiple of the absolute value function .

∴  any norm on K is a positive scalar multiple of the absolute value
function

For n > 1 , let p be a real number≥ 1

14



Kn = { ( x(1) , x(2) , . . . , x(n) ) : x(i) K , i = 1 , 2 , . . . , n }∈

For x Kn , that is , x = ( x(1) , x(2) , . . . , x(n) ) ,  define∈

||𝑥||
𝑝

= (|𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝

Then || ||p is a norm on Kn

When p = 1 ,

Then , ||x||1 = |x(1)| + |x(2)| + . . . + |x(n)|

Since |x(i)| 0 i = 1 , 2 , . . . , n   , ||x||1 0≥ ∀ ≥

And ||x||1 = 0 |x(1)| + . . .  +|x(n)| = 0⇔

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0                          ⇔

Now ||kx||1 =  |kx(1)| + |kx(2)| + . . . + |kx(n)|

= |k| |x(1)| + . . . + |k| |x(n)|

= |k| ( |x(1)| + . . . + |x(n)| )

= |k| ||x||1

||x + y||1 = |(x + y)(1)| + . . . + |(x + y)(n)|

= |x(1) + y(1)| + . . . + |x(n) + y(n)|

|x(1)| + |y(1)| + . . . + |x(n)| + |y(n)|≤

= |x(1)| + . . . + |x(n)| + |y(1)| + . . . + |y(n)|

= ||x||1 + ||y||1

15



Consider 1<p<∞

Now  , ||𝑥||
𝑝

= ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

Since x(i) 0 i , we have ||x||p 0| |𝑝 ≥ ∀ ≥

And ||𝑥||
𝑝

= 0⇔( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝 = 0

= 0 i⇔ |𝑥(𝑖)|𝑝 ∀

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0 .                          ⇔
Now

||𝑘𝑥||
𝑝

= ( |𝑘𝑥(1)|𝑝 +.  .  .  + |𝑘𝑥(𝑛)|𝑝)1/𝑝

= ( |𝑘|𝑝 |𝑥(1)|𝑝 +.  .  .  + |𝑘|𝑝 |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ||𝑥||
𝑝 .

              ||𝑥 + 𝑦||
𝑝

= ( |𝑥(1) + 𝑦(1)|𝑝 +.  .  .  + |𝑥(𝑛) + 𝑦(𝑛)|𝑝 )1/𝑝

We have by Minkowski’s inequality ,

+
𝑖=1

𝑛

∑ |𝑥(𝑖) + 𝑦(𝑖)|𝑝( )1/𝑝

≤
𝑖=1

𝑛

∑ |𝑥(𝑖)|𝑝( )
1/𝑝

𝑖=1

𝑛

∑ |𝑦(𝑖)|𝑝( )1/𝑝

Then
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||𝑥 + 𝑦||
𝑝
 ≤  |𝑥(1)|𝑝 +.  .  . + |𝑥(𝑛)|𝑝( )

1/𝑝
+  |𝑦(1)|𝑝 +.  .  .  + |𝑦(𝑛)|𝑝( )

1/𝑝

= ||𝑥||
𝑝

+ ||𝑦||
𝑝

Then , for 1 p< , is a norm on Kn≤ ∞ || ||
𝑝

When p = , define∞ ||𝑥||
∞

= 𝑚𝑎𝑥 { |𝑥(1)| , |𝑥(2)| ,.  .  .  , |𝑥(𝑛)| }

Then it is a norm on Kn

0 since each values |x(i)| 0||𝑥||
𝑝 

≥ ≥

So that

max {|x(i)| , i=1, . . . , n} 0≥

= 0||𝑥||
∞

= 0 ⇔𝑚𝑎𝑥 { |𝑥(𝑖)| : 𝑖 = 1,.  .  .  , 𝑛 }

|x(i)| = 0 i⇔ ∀

x(i) = 0 , i⇔ ∀

x = 0⇔

||𝑘𝑥||
∞

 =  𝑚𝑎𝑥 { |𝑘𝑥(1)| ,.  .  .  , |𝑘𝑥(𝑛)| }

= max { |k| |x(1)| , . . . , |k| |x(n)|}

= |k| max {|x(1)| , . . . , |x(n)|}

= |k| ||x||
∞

||x + y| = max { |x(1) + y(1)| , . . . , |x(n) + y(n)| }|
∞

max { |x(1)| + |y(1)| , . . . , |x(n)| + |y(n)| }≤

17



max { |x(1)| , . . . , |x(n)| } + max { |y(1)| , . . . , |y(n)| }≤

= ||x| + ||y||
∞

|
∞

2) Sequence space

Let 1 p < , = { x = ( x(1) , x(2) , . . . ) ;  x(i) K and x(j) < } , that is , is the≤ ∞ 𝑙𝑝 ∈
𝑗=1

∞

∑ | |𝑝 ∞ 𝑙𝑝

space of p-summable scalar sequences in K . For x = (x(1) , x(2) , . . . ) ,∈ 𝑙𝑝

let ||x||p = ( |x(1)|p + |x(2)|p + . . . )1/p . Then it is a norm on lp.

That is , || ||p is a function from lp to R .

If p = 1 , then l1 is a linear space and ||x||1 = ( |x(1)| + |x(2)| + . . . ) is a norm on l1

Let p = . Then is the linear space of all bounded scalar sequences . And ,∞ 𝑙∞

||x = sup { |x(j)| : j = 1, 2, 3, . . . }||
∞

Then is a norm on|| ||
∞

𝑙∞
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   CHAPTER 2

THEOREMS ON NORMED SPACES

a) Let  Y  be a subspace of a normed space X , then Y and its closure  are normed spaces with𝑌
the induced norm.

b) Let Y be  a closed subspace of a normed space X , for x +Y in the quotient space X/Y, let
|||x +Y||| = inf { ||x+y|| : y Y} . Then |||   ||| is a norm on X/Y , called the quotient norm.∈

        A sequence (xn + Y) converges to x + Y in X/Y iff there is a sequence (yn) in Y , (xn+ yn)
converges to x in X.

c) Let || ||pbe a norm on the linear space Xp , j = 1,2,…. . Fix p such that 1 p≤ ≤∞

For x = (x(1) , x(2) , … , x(m))   that  is the product space X =X1× X2 × …× Xm ,

  Let , if 1  p <||𝑥||
𝑝
 =   ||𝑥(1)||

1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

≤ ∞

 ||x||p = max { ||x(1)||1 , … , ||x(m)||m }   ,   if p = .∞

 Then ||   ||p is a norm on X.

A sequence (xn) converges to x in  X (xn(j)) converges to x(j) in Xj      j=1,2,…,m.  ⇔ ∀

Proof:

a) Since X is a normed space, there is a norm on X to Y . Since  Y is a subspace of X,   

||  ||y: Y   R is a function. To show that ||  ||y is a norm on Y.       →

For y  Y ,    || y||Y  = ||y|| , then∈

||y||Y   ( ∵||y||  0 )    and     ||y||Y = 0 y = 0≥ 0  ≥ ⇔

||ky||Y = ||ky|| = |k| ||y|| = |k| ||y||y .

Let y1 , y2  Y.  Then ,∈

||𝑦
1

+ 𝑦
2
||

𝑦
= ||𝑦

1
+ 𝑦

2
|| ≤ ||𝑦

1
|| + ||𝑦

2
|| = ||𝑦

1
||

𝑦
+ ||𝑦

2
||

𝑦

Now the continuity of addition and scalar multiplication shows that  is a subspace of X, since if𝑌
xn  x and yn y ,   xn , yn   , then→ → ∈ 𝑌

xn + yn  x + y (by continuity of addition)    and→
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kxn  kx (by continuity of scalar Xn) .→

Since   is closed , x + y and kx .  Therefore   X.𝑌 ∈ 𝑌 ∈ 𝑌 𝑌 ≤

  norm on X induces a norm on Y and∴ 𝑌

b) X/Y , the quotient space equals X/Y={ x + Y : x X }.∈

|||x + y||| = inf { ||x + y|| : y Y }∈

Claim: |||  ||| is a norm on X/Y , called quotient norm

• Let x X ,∈

|||x + Y||| = inf { ||x + y|| : y Y }   0.∈ ≥

|||x + Y|||  0 .∴ ≥

   If |||x + y||| = 0 ( 0 in X/Y is Y) , then there is a sequence (yn) in Y    ∋

 ||x + yn ||  0→

                           ⇒                x + yn  0→

                           ⇒                 yn  -x→

Since yn Y and Y is closed∈

-x Y   ⇔ x Y ( Y is a subspace)∈ ∈ ∵

                    ⇔x + Y = Y , zero in X/Y.

• For k K ,∈

|||k(x + Y)||| = |||kx + Y|||

                                          = inf { ||k(x + y)|| : y Y}∈

                                          = inf { |k| ||x + y|| : y Y}∈

                                          = |k| inf { ||x + y|| : y Y}∈

= |k| |||x + Y||| .

• Let x1 , x2 X . Then∈

               |||x1 + Y||| = inf { ||x1 + y|| : y Y } . Then y1  Y∈ ∃ ∈ ∋

               |||x1 + Y||| +   >  ||x1 + y1|| ,  and
ε
2
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                  |||x2 + Y||| = inf { ||x2 + y|| : y Y}  , Then   y2 Y  ∈ ∃ ∈ ∋

                                |||x2 + Y||| +   >  ||x2 + y2|| .
ε
2

||x1 + y1 + x2 + y2 ||     ||x1 + y1|| + ||x2 + y2||≤

  |||x1 + Y||| + + |||x2 + Y||| +≤ ε
2

ε
2

Let y = y1 + y2 Y . Then ,∈

                    ||(x1+x2) + y||   |||x1 + Y||| + |||x2 + Y||| + ℇ    —(1)≤

Now ,  |||(x1 + Y) + (x2 + Y)||| = |||x1 + x2 + Y|||

                                                =inf { ||x1 + x2 + y|| : y Y }∈

                                             < ||x1 + x2 + y||

                                           |||x1 + Y||| + |||x2 + Y||| + ℇ          (by (1) )≤

since ℇ is arbitrary , we have  

|||(x1 + Y) + (x2 + Y)|||   |||x1 + Y||| + |||x2 + Y|||≤

∴ |||   |||  is a norm on X/Y.

Let (xn + Y) be a sequence in X/Y . Assume that (yn) is a sequence in Y   (xn + yn) converges∋
to x in X.

That is ,  (xn - x + yn) converges to 0 .      —(1)

Claim: (xn + Y) converges to x + Y.

  Consider

|||xn + Y -  (x+Y)||| = |||(xn - x) + Y|||

                                                       = inf { ||xn - x + yn|| : y Y }∈

                                                        ||xn - x + yn||      yn Y .≤ ∀ ∈

Then by (1) , xn + Y converges to x + Y in X/Y.

   Conversely assume that the sequence (xn + Y)  x + Y in X/Y.→

   Consider |||xn + Y - (x + Y)||| = |||xn - x + Y|||

                                                    = inf { ||xn -x + y|| : y Y }∈

Then we can choose yn Y ∈ ∋
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                       ||xn - x + yn|| <  |||(xn - x) + Y||| + ,  n=1,2,3,….1
𝑛

Since xn+Y  x+Y , we get→

             (xn - x + yn) converges to zero as n →∞

That is , (xn + yn) converges to x in X as n →∞

c) Consider   1  p < ≤ ∞

          Given that

||𝑥||
𝑝 

= (||𝑥(1)||
1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝 )1/𝑝

  Clearly , ||x||p  0 .  ≥

  Since each ||𝑥(𝑖)||
𝑖
𝑝 ≥ 0 .

              ||x||p = 0  ⇔   = 0   ∀ j = 1, . . . ,m|𝑥(𝑗)|
𝑗
𝑝

                                         ⇔  x(j) = 0           ∀ j.

                                         ⇔  x = (x(1), . . . ,x(m)) = 0

                    ||kx||p =                            ||𝑘𝑥(1)||
1
𝑝 +.  .  . + ||𝑘𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

   =  |𝑘|𝑝||𝑥(1)||
1
𝑝 +.  .  . + |𝑘|𝑝||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                            = |𝑘|  ||𝑥(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

, k K and x X= |𝑘| ||𝑥||
𝑝

∈ ∈

Now, ||𝑥 + 𝑦||
𝑝

=  ||𝑥(1) + 𝑦(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚) + 𝑦(𝑚)||

𝑚
𝑝( )1/𝑝

  (by Minkowski’s inequality)

                                 ≤

 ||𝑥(1)||
1

+ ||𝑦(1)||
1( )𝑝 +.  .  .  +  ||𝑥(𝑚)||

𝑚
+ ||𝑦(𝑚)||

𝑚( )𝑝( )1/𝑝

                                 +          (Minkowski’s inequality )≤
𝑗=1

𝑚

∑ ||𝑥(𝑗)||
𝑗
𝑝( )1/𝑝

𝑗=1

𝑚

∑ ||𝑦(𝑗)||
𝑗
𝑝( )1/𝑝
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                                =  ||𝑥(1)||
1
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                                = ||x||p + ||y||p

        Now suppose  p =      ∞

  ||x||∞  = max { ||x(1)||1 , . . . , ||x(m)|| m }

||x||∞  0   Since ||x(j)||   0 ,       ∀ j≥ ≥

||x||∞  = 0          ⇔  ||x(m)|| = 0      ∀ m

                                       ⇔  x(m) = 0      ∀ m

                                       ⇔ x = 0

||kx||∞  = max { ||kx(1)||1 , . . . ,  ||kx(m)||m }

               = |k| max { ||x(1)||1 , . . . , ||x(m)||m }       

   =  |k| ||x||∞

||x + y||∞ = max { ||x(1) + y(1)||1, . . . , ||x(m) + y(m)||m }

                  max { ||x(1)||1 + ||y(1)||1 , . . . , ||x(m)||m + ||y(m)||m }≤

                                =  max { ||x(1)||1 , . . . ,  ||x(m)||m }   + max { ||y(1)||1 , . . . , ||y(m)||m }

                                = ||x||∞ + ||y||∞

We now consider  ,  

||𝑥
𝑛

− 𝑥(1)||
𝑝

=  ||𝑥
𝑛
(1) − 𝑥(1( )||

1
𝑝 +.  .  . + ||𝑥

𝑛
(𝑚) − 𝑥(𝑚)||

𝑚
𝑝 )

1/𝑝

Then  

xn  x in X      ⇔  ||xn - x ||p   0 → →

                                        ⇔  ||xn(j) - x(j)  0||
𝑗
𝑝 →

                                        ⇔  xn(j) - x(j)  → 0

                                        ⇔  xn(j) → x(j) in X j .∀

                                                          

23



RIESZ  LEMMA

Let be a normed space . be a closed subspace of and . Let be a real number𝑋 𝑌 𝑋 𝑋 ≠ 𝑌 𝑟
such that . Then there exist some xr X such that ||xr||  = 1 and0 < 𝑟 < 1 ∈

r<dist ( xr , Y ) 1≤

Proof :

We have ,

dist (x , Y) = inf { d(x , y) : y Y}∈

= inf { ||x - y|| : y Y}∈

Since Y X , consider x X x Y.≠ ∈ ∋ ∉

If dist(x , Y) = 0 , then ||x - y|| = 0 x = Y ( ∵ Y is closed )⇒ ∈𝑌

Therefore ,

dist (x , Y) 0≠

That is ,

dist (x , Y) > 0

Since 0 < r < 1  , > 1
1
𝑟

> dist (x , Y)⇒
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟

That is  , is not a lower bound of { ||x - y|| : y Y }
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟 ∈

Then y0 Y ||x - y0|| < (1)∃ ∈ ∋
𝑑𝑖𝑠𝑡(𝑥 , 𝑌)

𝑟    →

Let xr = . Then xr X
𝑥 −  𝑦

0

||𝑥 − 𝑦
0
|| ∈

( ∵y0 Y , x Y x - y0 X and ||x - y0|| 0 )∈ ∉ ⇒ ∈ ≠
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Then ||xr|| =|| || = = 1
𝑥 − 𝑦

0

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

Now to prove r < dist( ) 1𝑥
𝑟
, 𝑌 ≤

We have dist(xr , Y) = inf { ||xr - y|| : y Y }∈

||xr - y|| y Y≤ ∀ ∈

In particular, 0 , so that dist(xr , Y) ||xr - 0|| = 1∈ 𝑌 ≤

That is ,

dist (xr , Y) 1≤

Now ,

dist (xr , Y) = dist ( , Y )
𝑥 − 𝑦

0

||𝑥−𝑦
0
||

= dist ( x - y0 , Y)
1

||𝑥−𝑦
0
||

= inf { ||x - y0 - y|| : y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= inf {||x - (y0+ y)|| : y0 + y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= dist (x , Y)
1

||𝑥−𝑦
0
||

> dist (x , Y)    by (1)
𝑟

𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

dist (xr , Y) > r⇒

That is ,

r < dist (xr , Y) 1≤
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CONCLUSION

This project discusses the concept of normed linear space that is fundamental to
functional analysis . A normed linear space is a vector space over a real or complex
numbers ,on which the norm is defined . A norm is a formalization and generalization to
real vector spaces of the intuitive notion of “length” in real world

In this project , the concept of a norm on a linear space is introduced and thus
illustrated . It mostly includes the properties of normed linear spaces and different proofs
related to the topic.
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INTRODUCTION 

A power series is a type of series with terms involving a variable. Power series 

are often used by calculators and computers to evaluate trigonometric, 

hyperbolic, exponential and logarithm functions. So any application of these 

kind of functions is a possible application of power series. Many interesting and 

important differential equations can be found in power series. 

 

 

. 
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PRELIMINERY 

 

A.  An infinite series of the form   

                                  ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯                                (1) 

       is called a power series in x. The series 

∑  

∞

𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)2 + ⋯ 

       is a power series in x – x0. 

 

B. The series (1) is said to converge at a point x if the limit 

𝑙𝑖𝑚
𝑚→∞

  ∑  

𝑚

𝑛=0

𝑎𝑛𝑥𝑛 

      exists, and in this case the sum of the series is the value of this limit. 

     Radius of convergence: Series in 𝑥 has a radius of convergence 𝑅, where  

      0 ≤ 𝑅 ≤ ∞, with the property that the series converges if |𝑥| < 𝑅 and           

      diverges if |𝑥| > 𝑅. It should be noted that if 𝑅 = 0 then no 𝑥 satisfies            

      |𝑥| < 𝑅, and if 𝑅 = ∞ then no 𝑥 satisfies |𝑥| > 𝑅 

𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
𝑎𝑛

𝑎𝑛+1
|  , if the limit exists. 

 

C. Suppose that (1) converges for |𝑥| < 𝑅 with 𝑅 > 0, and denote its sum  

     by f(x):         

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

     Then f(x) is automatically continuous and has derivatives of all orders for 

      |𝑥| < 𝑅. 
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D.  Let f(x) be a continuous function that has derivatives of all orders for 

      |x|< R with R > 0. f(x) be represented as power series using Taylor’s      

      formula: 

𝑓(𝑥) = ∑  

𝑛

𝑘=0

𝑓(𝑘)(0)

𝑘!
𝑥𝑘 + 𝑅𝑛(𝑥) 

     where the remainder Rn (x) is given by 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝑥̅)

(𝑛 + 1)!
𝑥𝑛+1 

     for some point 𝑥̅ between 0 and x.  

 

E.  A function f(x) with the property that a power series expansion of 

      the form 

  

𝑓(𝑥) = ∑  

∞

𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 

      is valid in some neighbourhood of the point x0 is said to be analytic at 

      x0. In this case the an are necessarily given by 

𝑎𝑛 =
𝑓(𝑛)(𝑥0)

𝑛!
 

      and is called the Taylor series of f(x) at x0. 

 

Analytic functions: A function f defined on some open subset U of R or C is          

called analytic if it is locally given by a convergent power series. This means 

that every a ∈ U has an open neighbourhood V ⊆ U, such that there exists           

a power series with centre a that converges to f(x) for every x ∈ V. 
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CHAPTER 1 

SERIES SOLUTION OF FIRST ORDER EQUATION 

We have studied to solve linear equations with constants coefficient but with 

variable coefficient only specific cases are discussed. Now we turn to these 

latter cases and try to find a general method to solve this. The idea is to assume 

that the unknown function y can be explained into a power series. Our purpose 

in this section is to explain the procedures by showing how it works in the case 

of first order equation that are easy to solve by elementary methods.  

 

Example 1: we consider the equation               

𝑦ʹ = 𝑦 

Consider the above equation as  (1). Assume that y has a power series solution 

of the form 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

Which converges for |x| < R, R > 0 

That is we assume that  𝑦ʹ = 𝑦 has a solution that is analytic at origin. We have 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

                           = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ ⋯ 

then 

𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 

                                     = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ … …. 

            ∴ (1) ⇒ 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 ⋯ 

                       = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

⇒ 𝑎1 = 𝑎0  

 2𝑎2 = 𝑎1 ⇒                                𝑎2 =
𝑎1

2
=

𝑎0

2
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3𝑎3 = 𝑎2 ⇒                               𝑎3 =
𝑎2

3
=

𝑎0

2 ∙ 3
=

𝑎0

3!
 

4𝑎4 = 𝑎3 ⇒                               𝑎4 =
𝑎3

4
=

𝑎0

2 ⋅ 3 ⋅ 4
=

𝑎0

4!
 

∴  we get                                      𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

                                                            = 𝑎0 + 𝑎0𝑥 +
𝑎0

2
𝑥2 +

𝑎0

3!
𝑥3 +

𝑎0

4!
𝑥4 + ⋯ 

                                                            = 𝑎0 (1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ ) 

                                                        𝑦 = 𝑎0𝑒𝑥 

To find the actual function we have 𝑦ʹ = 𝑦 

                                            i.e.,   
𝑑𝑦

𝑑𝑥
= 𝑦  ⇒       

𝑑𝑦

𝑦
= 𝑑𝑥 

integrating  

                                                 log 𝑦 = 𝑥 + 𝑐 

                                          i.e.,        𝑦 = 𝑒𝑥+𝑐 = 𝑒𝑥 ⋅ 𝑒𝑐 

                                                        𝑦 = 𝑎0𝑒𝑥 , where a0 = ec , a constant. 

 

 Example 2: solve 𝑦′ = 2𝑥𝑦. Also find its actual solution. 

 Solution:                                         𝑦′ = 2𝑥𝑦                        (1) 

 Assume that y has a power series of the form 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

Which converges for  |𝑥| < 𝑅, 𝑅 > 0 

We have                                           𝑦 = ∑  

∞

𝑛=0

a𝑛 𝑥𝑛 

                                                        = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ 

   𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 
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                             = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ 

Then (1) ⇒ 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ =  2𝑥(𝑎0 + 𝑎1𝑥 +𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ ) 

                                                      = 2𝑥𝑎0 + 2𝑥𝑎1𝑥 + 2𝑥𝑎2𝑥2 + 2𝑥𝑎3𝑥3 + ⋯ 

                                                      = 2𝑥𝑎0 + 2𝑎1𝑥2 + 2𝑎2𝑥3 + 2𝑎3𝑥4 + ⋯ … .. 

⇒ 𝑎1 = 0         2𝑎2 = 2𝑎0 ⇒ 𝑎2 =
2𝑎0

𝑧
= 𝑎0 

                        3. 𝑎3 = 2𝑎1 ⇒ 𝑎3 =
2𝑎1

3
= 0 

                         4𝑎4 = 2𝑎2 ⇒ 𝑎4 =
2𝑎2

42
=

𝑎0

2
 

                         5𝑎5 = 2𝑎3 = 0 ⇒ 𝑎5 = 0 

                         6𝑎6 = 2𝑎4 ⇒ 𝑎6 =
2𝑎4

6
=

𝑎4

3
=

𝑎0

2⋅3
=

𝑎0

3!
 

We get, 

            

𝑦  = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯

 = 𝑎0 + 0 + 𝑎0𝑥2 + 0𝑥3 +
𝑎0

2
𝑥4 + ⋯

 = 𝑎0 + 𝑎0𝑥2 +
𝑎0

2
𝑥4 + ⋯

 = 𝑎0 (1 + 𝑥2 +
𝑥4

2!
+

𝑥6

3!
+ ⋯ )

 

                                  𝑦 = 𝑎0𝑒𝑥2
  

To find an actual solution 

                

⇒

                                    𝑦′ = 2𝑥𝑦
𝑑𝑦

𝑑𝑥
= 2𝑥𝑦

                                   
𝑑𝑦

𝑦
= 2𝑥 ⋅ 𝑑𝑥

                              log 𝑦 = 𝑥2 + 𝑐

𝑦 = 𝑒𝑥2
+ 𝑐

⇒ 𝑦 = 𝑎0𝑒𝑥2
, where 𝑎0 = 𝑒𝑐
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Example 3: Consider 𝑦 = (1 + 𝑥)𝑝 where p is an arbitrary constant. Construct a 

differential equation from this and then find the solution using power series 

method. 

 Solution 

             First, we construct a differential equation 

                         i.e. 𝑦 = (1 + 𝑥)𝑝 

                              𝑦′ = 𝑝(1 + 𝑥)𝑝−1 =
𝑝(1+𝑥)𝑝

1+𝑥
=

𝑝𝑦

1+𝑥
 

                            ∴ (1 + 𝑥)𝑦′ = 𝑝𝑦,   𝑦(0) = 𝑟 

Assume that y has a power series solution of the form, 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 

                                  = 𝑎0 + 𝑎1𝑥 + 𝑎̇2𝑥2 + ⋯ … … 

Which converges for |𝑥| < 𝑅̇,    𝑅 > 0 

                                𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ … … .. 

    𝑦′ = ∑  

∞

𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 

                              = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ 

                             Then (1 + 𝑥)𝑦′ = 𝑝𝑦  

⇒ (1 + 𝑥)𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ = 𝑝(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )  

⇒ (𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ ) + (𝑎1𝑥 + 2𝑎2𝑥2 + 3𝑎3𝑥3 + ⋯ )  

                                                           = 𝑎0𝑝 + 𝑎1𝑝𝑥 + 𝑎2𝑝𝑥2 + ⋯ 

Equating the coefficients of 𝑥, 𝑥2, … 

                            𝑎1 = 𝑎0𝑝  i.e.  𝑎1 = 𝑝, (since 𝑎0 = 1) 

       ⇒ 2𝑎2 = 𝑎1(p − 1) 

               𝑎2 =
𝑎1(p − 1)

2
=

𝑎0𝑃(𝑝 − 1)

2
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                3𝑎3 + 2𝑎2 = 𝑎2𝑝
𝑠𝑎3 = 𝑎2𝑝 − 2𝑎2

                          = 𝑎2(𝑝 − 2)

𝑎3 =
𝑎2(𝑝 − 2)

3
=

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)

2 ⋅ 3

 

4𝑎4 + 3𝑎3 = 𝑎3𝑝
4𝑎4 = 𝑎3𝑝 − 3𝑎3

= 𝑎3(𝑝 − 3)

𝑎4 =
𝑎3(𝑝 − 3)

4
=

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

2 ⋅ 3 ⋅ 4

 

∴ we get, 

           𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 

= 𝑎0 + 𝑎0𝑝𝑥 +
𝑎0𝑝(𝑝 − 1)

2
𝑥2 +

𝑎0𝑝(𝑝 − 1)(𝑝 − 2)

2 ⋅ 3
𝑥3 + ⋯ … 

              = 1 + 𝑝𝑥 +
𝑝(𝑝 − 1)

2!
𝑥2 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
𝑥3 + 

                 
𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

4!
𝑥4 + ⋯ +

𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − (𝑛 − 1))

𝑛!
𝑥𝑛 

Since the initial problem y(0) = 1 has one solution the series converges for |x|<1 

So this is a power solution,  

(1 + 𝑥)𝑝 = 1 + 𝑝𝑥 +
𝑝(𝑝 − 1)

2!
𝑥2 + ⋯ +

𝑝(𝑝 − 1) ⋯ (𝑝 − (𝑛 − 1))

𝑛!
𝑥𝑛 

Which is binomial series. 

 

Example 4: Solve the equation  𝑦′ = 𝑥 − 𝑦, 𝑦 (0) = 0   

  Solution: Assume that y has a power series solution of the form 

𝑦 = ∑  

∞

𝑛=0

an 𝑥𝑛 

which converges for |𝑥| < 𝑅, 𝑅 > 0 

                           
 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯

𝑦′ = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯
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 Now 𝑦′ = 𝑥 − 𝑦

(𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ ) = 𝑥 − (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ )
 

Equating the coefficients of 𝑥, 𝑥2,  

𝑎1     = −𝑎0 = 0,      Since     𝑦(0) = 0
2𝑎2     = 1 − 𝑎1        
    = 1 − 0    

 

                                      

⇒ 𝑎2 =
1

2
   3𝑎3 = −𝑎2

      𝑎3 =
−𝑎2

3
= −

1

2 ⋅ 3

 

                                          4𝑎4 = −𝑎3

⇒ 𝑎4 =
1

2 ⋅ 3 ⋅ 4

 

                                           ∴ 𝑦 = 0 + 0 +
𝑥2

2!
−

𝑥3

3!
+

𝑥4

4!
− ⋯ … … 

                                                   
= (1 − 𝑥 +

𝑥2

2!
−

𝑥3

3!
+ ⋯ ) + 𝑥 − 1

= 𝑒−𝑥 + 𝑥 − 1

 

By direct method  

𝑦′ = 𝑥 − 𝑦
𝑑𝑦

𝑑𝑥
= 𝑥 − 𝑦 ⇒

𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑥

                                       ( 
𝑑𝑦

𝑑𝑥
+ 𝑝𝑦 = 𝑄 𝑓𝑜𝑟𝑚) 

here 𝑃(𝑥) = 1,  integrating factor 

= 𝑒∫ 𝑝(𝑥)⋅𝑑𝑥

= 𝑒𝑥

 

                     

∴ 𝑦𝑒𝑥 = ∫ 𝑥𝑒𝑥 ⋅ 𝑑𝑥

𝑦𝑒𝑥 = 𝑥 ⋅ 𝑒𝑥 − ∫ 𝑒𝑥 ⋅ 𝑑𝑥
= 𝑥𝑒𝑥 − 𝑒𝑥

𝑦𝑒𝑥 = 𝑒𝑥(𝑥 − 1) + 𝑐

 

𝑦 =
𝑒𝑥(𝑥 − 1) + 𝑐

𝑑𝑥
= 𝑥 − 1 +

𝑐

𝑒𝑥
= 𝑐𝑒−𝑥 + (𝑥 − 1)

  ∴ 𝑦 = (𝑥 − 1) + 𝑐𝑒−𝑥
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CHAPTER 2 

SECOND ORDER LINEAR EQUATION, ORDINARY POINTS 

 

Consider the general homogeneous second order linear equation, 

                                    𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0                    (1) 

As we know, it is occasionally possible to solve such an equation in terms of 

familiar elementary functions. This is true, for instance, when P(x) and Q(x) 

are constants, and in a few other cases as well. For the most part, however, 

the equations of this type having the greatest significance in both pure and 

applied mathematics are beyond the reach of elementary methods, and can 

only be solved by means of power series. 

P(x) and Q(x) are called coefficients of the equation. The behaviour of its 

solutions near a point x0 depends on the behaviour of its coefficient functions 

P(x) and Q(x) near this point. we confine ourselves to the case in which P(x) and 

Q(x) are well behaved in the sense of being analytic at x0, which means that 

each has a power series expansion valid in some neighbourhood of this point. In 

this case x0 is called an ordinary point of equation (1). Any point that is not an 

ordinary point of (1) is called a singular point. 

Consider the equation, 

                                                          𝑦′′ + 𝑦 = 0                                     (2) 

the coefficient functions are P(x) = 0 and Q(x) = 1, These functions are analytic 

at all points, so we seek a solution of the form, 

                                 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 + ⋯                    (3)       

Differentiating (3) we get, 

              𝑦′ = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + ⋯ + (𝑛 + 1)𝑎𝑛+1𝑥𝑛 + ⋯          (4)   
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And 

 𝑦′′ = 2𝑎2 + 2 ⋅ 3𝑎3𝑥 + 3 ⋅ 4𝑎4𝑥2 + ⋯ + (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 + ⋯  (5) 

If we substitute (5) and (3) into (2) and add the two series term by term, we get 

𝑦′′ + 𝑦 =
(2𝑎2 + 𝑎0) + (2 ⋅ 3𝑎3 + 𝑎1)𝑥 + (3 ⋅ 4𝑎4 + 𝑎2)𝑥2 +

  (4 ⋅ 5𝑎5 + 𝑎3)𝑥3  + ⋯ + [(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑎𝑛]𝑥𝑛 + ⋯
= 0 

and equating to zero the coefficients of successive powers of x gives 

2𝑎2 + 𝑎0 = 0, 2 ⋅ 3𝑎3 + 𝑎1 = 0, 3 ⋅ 4𝑎4 + 𝑎2 = 0 

4 ⋅ 5𝑎5 + 𝑎3 = 0, … … , (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑎𝑛 = 0, … 

By means of these equations we can express an in terms of a0 or a0, according 

as n is even or odd: 

𝑎2 = −
𝑎0

2
, 𝑎3 = −

𝑎1

2 ⋅ 3
, 𝑎4 = −

𝑎2

3 ⋅ 4
=

𝑎0

2 ⋅ 3 ⋅ 4
 

𝑎5 = −
𝑎3

4 ⋅ 5
=

𝑎1

2 ⋅ 3 ⋅ 4 ⋅ 5
, ⋯ 

With these coefficients, (3) becomes 

                    𝑦 = 𝑎0 + 𝑎1𝑥 −
𝑎0

2
𝑥2 −

𝑎1

2 ⋅ 3
𝑥3 +

𝑎0

2 ⋅ 3 ⋅ 4
𝑥4 +

𝑎1

2 ⋅ 3 ⋅ 4 ⋅ 5
𝑥5 − ⋯ 

                        = 𝑎0 (1 −
𝑥2

2!
+

𝑥4

4!
− ⋯ ) + 𝑎1 (𝑥 −

𝑥3

3!
+

𝑥5

5!
− ⋯ )            (6) 

  𝑖. 𝑒,            𝑦 = 𝑎0cos 𝑥 + 𝑎1sin 𝑥 

Since each of the series in the parenthesis converges for all x. This implies the 

series (2) for all x. 

 

Solve the legenders equation, 

(1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0 

Solution 

Consider   (1 − 𝑥2)𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0  as equation (1) 

Assume that y has a power series solution of the form 

𝑦 = ∑𝑎𝑛𝑥𝑛 
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Which converges |𝑥| < 𝑅, 𝑅 > 0 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

 

       

2𝑥𝑦′ = ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛

𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

𝑥2𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛

 

put 𝑛 = 𝑛 + 2    (Since 𝑦′′ is not 𝑥𝑛 form ) 

⇒ ∑  

∞

𝑛=0

(𝑛 + 2)(𝑛 + 2 − 1)𝑎𝑛+2𝑥𝑛+2−2

∴ 𝑦′′ = ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛

 

Now (1) ⇒              𝑦′′ − 𝑥2𝑦′′ − 2𝑥𝑦′ + 𝑝(𝑝 + 1)𝑦 = 0 

⇒ ∑(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 − ∑𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 − ∑2𝑛𝑎𝑛𝑥𝑛 + ∑𝑝(𝑝 + 1)𝑎𝑛𝑥𝑛 = 0  

⇒ ∑  

∞

𝑛=0

[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 𝑛(𝑛 − 1)𝑎𝑛 − 2𝑛𝑎𝑛 + 𝑝(𝑝 + 1)𝑎𝑛)𝑥𝑛] = 0  

                                                                                         for n = 0,1,2,3……. 

⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 − 𝑛(𝑛 − 1)𝑎𝑛 − 2𝑛𝑎𝑛 + 𝑝(𝑝 + 1)𝑎𝑛 = 0 

⇒ 𝑎𝑛+2 =
[𝑛(𝑛 − 1) + 2𝑛 − 𝑝(𝑝 + 1)]

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 

=
(𝑛2 − 𝑛 + 2𝑛 − 𝑝2 − 𝑝)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)

=
(𝑛2 + 𝑛 − 𝑝2 − 𝑝)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)
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∴ 𝑎𝑛+2 =
−(𝑝 − 𝑛)(𝑝 + 𝑛 + 1)

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛 , 𝑛 = 0,1,2 …

      
This is an Recursion formula 

 

 

 put 𝑛 = 0, 𝑎2 =
−𝑝(𝑝 + 1)

1 ⋅ 2
𝑎0

𝑛 = 1, 𝑎3 =
−(𝑝 − 1)(𝑝 + 2)

2 ⋅ 3
⋅ 𝑎1

        𝑛 = 2,      𝑎4 =
−(𝑝 − 2)(𝑝 + 3)

3𝑖4
𝑎2

 =
𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
𝑎0

 

         

𝑛 = 3, 𝑎5 =
−(𝑝 − 3)[𝑝 + 4)

4 ⋅ 5
𝑎3

=
(𝑝 − 1)(𝑝 − 3)(𝑝 + 2)(𝑝 + 4)

5!
𝑎1

𝑛 = 4, 𝑎6 =
−(𝑝 − 4)(𝑝 + 5)

5 ⋅ 6
𝑎4

=
−𝑝(𝑝 − 2)(𝑝 − 4)(𝑝 + 1)(𝑝 + 3)(𝑝 + 5)

6!
𝑎0

 

        
𝑛 = 5,          𝑎7 = −

(𝑝 − 5)(𝑝 + 6)

6 ⋅ 7
𝑎5

= −
(𝑝 − 1)(𝑝 − 3)(𝑝 − 5)(𝑝 + 2)(𝑝 + 4)(𝑝 + 6)

7!
𝑎1

 

 

               

𝑦 = 𝑎0 [1 −
𝑝(𝑝 + 1)

2!
𝑥2 +

𝑝(𝑝 − 2)(𝑝 + 1)(𝑝 + 3)

4!
𝑥4

−
𝑝(𝑝 − 2)(𝑝 − 4)(𝑝 + 1)(𝑝 + 3)(𝑝 + 5)

6!
𝑥6 + ⋯ ]

+𝑎1 [𝑥 −
(𝑝 − 1)(𝑝 + 2)

3!
𝑥3 +

(𝑝 − 1)(𝑝 − 3)(𝑝 + 2)(𝑝 + 4)

5!
𝑥5

−
(𝑝 − 1)(𝑝 − 3)(𝑝 − 5)(𝑝 + 2)(𝑝 + 4)(𝑝 + 6)

7!
𝑥7 + ⋯ ]
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Find the general solution of (1 + 𝑥2)𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0 in terms of power 

series in 𝑥. Can you express this solution by means of elementary functions? 

Solution 

Consider the equation   (1 + 𝑥2)𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0  as equation (1) 

Assume that y has a power series solution of the form 

𝑦 = ∑𝑎𝑛𝑥𝑛 

Which converges |𝑥| < 𝑅, 𝑅 > 0 

         𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

       𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛−1

 

2𝑥𝑦′ = ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛

                   𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

 

                                    (1 + 𝑥2)𝑦′′ = 𝑦′′ + 𝑥2𝑦′′ 

                                                     𝑥2𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛 

        Now 𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 

 

 put 𝑛 = 𝑛 + 2

⇒                                                           ∑  

∞

𝑛=0

(𝑛 + 2)(𝑛 + 2 − 1)𝑎𝑛 + 2𝑥𝑛+2=2

                                        = ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛
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(1) ⇒ ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛 + ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛

+ ∑  

∞

𝑛=1

2𝑛𝑎𝑛𝑥𝑛 − ∑  

∞

𝑛=0

2𝑎𝑛𝑥𝑛 = 0

 

⇒ ∑[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 + 2𝑛𝑎𝑛 − 2𝑎𝑛)𝑥𝑛] = 0 

            ⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 + 2𝑛𝑎𝑛 − 2𝑎𝑛 = 0 

 

𝑎𝑛+2 =
[−𝑛(𝑛 − 1) − 2𝑛 + 2]

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛

=
(−𝑛2 + 𝑛 − 2𝑛 + 2)

(𝑛 + 1)(𝑛 + 2)
𝑎𝑛

 

 

                 

 put 𝑛 = 0, 𝑎2 =
2

1 ⋅ 2
𝑎0 =

2𝑎0

2!
= 𝑎0

𝑛 = 1, 𝑎3 =
(1 − 1 − 2 + 2)

2 ⋅ 3
𝑎1 = 0

𝑛 = 2, 𝑎4 =
2 − 4 − 4 + 2

3 ⋅ 4
𝑎2     =

−4

3 ⋅ 4
𝑎0 =

−𝑎0

3

 

                         
𝑛 = 3, 𝑎5 =

3 − 9 − 16 + 2

4.5
𝑎3   = 0

𝑛 = 4, 𝑎6 =
4 − 16 − 8 + 2

5.6
𝑎4   =

−3

5
𝑎4   =

3𝑎0

3.5
=

𝑎0

5

 

 

                                            

∴ 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯

= 𝑎0 + 𝑎1𝑥 + 𝑎0𝑥2 −
𝑎0

3
𝑥4 +

𝑎0

5
𝑥6 … .

= 𝑎0 [1 + 𝑥2 −
𝑥4

3
+

𝑥6

5
− ⋯ ] + 𝑎1𝑥

= 𝑎0 [1 + 𝑥 (𝑥 −
𝑥3

3
+

𝑥5

5
⋯ )] + 𝑎1𝑥

= 𝑎0(1 + 𝑥tan−1 𝑥) + 𝑎1𝑥
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Consider the equation   𝑦′′ + 𝑥𝑦′ + 𝑦 = 0 

(a) Find its general solution     𝑦 = ∑𝑎𝑛𝑥𝑛    in the form                                                        

𝑦 = 𝑎0𝑦1(𝑥) + 𝑎1𝑦2(𝑥) where 𝑦1(𝑥) and 𝑦2(𝑥) are power series 

(b) use the ratio test to verify that the two series 𝑦1(𝑥) and 𝑦2(𝑥) converges        

.      for all x. 

Solution: 

 Given              𝑦′′ + 𝑥𝑦′ + 𝑦 = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1) 

Assume that y has a power series solution the form ∑a𝑛𝑥𝑛 which converges 

for |𝑥|     𝑅 > 0 

𝑦 = ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ = ∑  

∞

𝑛=1

𝑛 ⋅ 𝑎𝑛𝑥𝑛−1

𝑦′′ = ∑  

∞

𝑛=2

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

= ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)𝑎𝑛+2𝑥𝑛

 

                               𝑥𝑦′ = ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛 

(1) ⇒ ∑  

∞

𝑛=0

(𝑛 + 1)(𝑛 + 2)a𝑛+2𝑥𝑛 + ∑  

∞

𝑛=1

𝑛𝑎𝑛𝑥𝑛 + ∑  

∞

𝑛=0

𝑎𝑛𝑥𝑛 = 0
 

                   ⇒ ∑[((𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛𝑎𝑛 + 𝑎𝑛)𝑥𝑛] = 0 

                   ⇒ (𝑛 + 1)(𝑛 + 2)𝑎𝑛+2 + 𝑛𝑎𝑛 + 𝑎𝑛 = 0 

                   ⇒ 𝑎𝑛+2 =
(−𝑛 − 1)𝑎𝑛

(𝑛 + 1)(𝑛 + 2)
=

−𝑎𝑛

𝑛 + 2
  

put         𝑛 = 0, 𝑎2 = −
𝑎0

2

                               𝑛 = 1, 𝑎3 =
−2𝑎1

2 ⋅ 3
=

−𝑎1

3
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𝑛 = 2,     𝑎4 =
−3𝑎2

3 ⋅ 4
=

−𝑎2

4
=

𝑎0

8

𝑛 = 3,     𝑎5 =
−4𝑎3

4 ⋅ 5
=

𝑎1

15

𝑛 = 4,     𝑎6 =
−5𝑎4

5 ⋅ 6
=

−𝑎0

48

 

∴  we get              𝑦 = 𝑎0 + 𝑎1𝑥 + −
𝑎0

2
𝑥2 −

𝑎1

3
𝑥3 +

𝑎0

8
𝑥4 +

𝑎1

15
𝑥5 −

𝑎0

48
𝑥6 + ⋯

  

                                   = 𝑎0 [1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥6

2 ⋅ 4 ⋅ 6
+ ⋯ ] + 𝑎1 [𝑥 −

𝑥3

3
+

𝑥5

3.5
+ ⋯ ]

 

𝑤ℎ𝑒𝑟𝑒          𝑦1(𝑥) = 1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥̇2

2 ⋅ 4 ⋅ 6
+ 

                      𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

𝑥5

3 ⋅ 5
+ ⋯ 

    

(b)           𝑦1(𝑥) = 1 −
𝑥2

2
+

𝑥4

2 ⋅ 4
−

𝑥6

2 ⋅ 4 ⋅ 6
+ ⋯ 

 

                         𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
𝑎𝑛

𝑎𝑛+1
| 

                             = 𝑙𝑖𝑚
𝑛→∞

  |
(−1)𝑛

2 ⋅ 4 ⋅ (2𝑛)
/

(−1)𝑛+1

2 ⋅ 4 ⋅⋅ (2𝑛 + 2)
| 

                             = 𝑙𝑖𝑚
𝑛→∞

  |
2(𝑛 + 1)

−1
| 

                             = 𝑙𝑖𝑚
𝑛→∞

 | − 2𝑛(1 +
1

𝑛
)| = ∞ 

                            
∴ 𝑦1(𝑥) converges for all 𝑥

 

                𝑦2(𝑥) = 𝑥 −
𝑥3

3
+

𝑥5

3 ⋅ 5
− ⋯ 
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                    𝑅 = 𝑙𝑖𝑚
𝑛→∞

  |
(−1)𝑛

3 ⋅ 5 ⋯ (2𝑛 + 1)

(−1)𝑛+1

3 ⋅ 5 ⋅ ⋯ (2𝑛 + 3)
⁄ | 

                        = 𝑙𝑖𝑚
𝑛→∞

  |
(−1) ⋅ 3 ⋅ 5 ⋯ (2𝑛 + 1)(2𝑛 + 3)

3 ⋅ 5 ⋯ ⋅ (2𝑛 + 1)
| 

                        = 𝑙𝑖𝑚
𝑛→∞

 |(−1)𝑛(2 + 3/𝑛)| = ∞ 

                       
∴ 𝑦2(𝑥) converges for all 𝑥

 

 

 

REGULAR SINGULAR POINTS 

A singular point 𝑥0 of equation 

𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0 

is said to be regular if the functions (𝑥 − 𝑥0)𝑃(𝑥) and (𝑥 − 𝑥0)2𝑄(𝑥) are 

analytic, and irregular otherwise. Roughly speaking, this means that the 

singularity in 𝑃(𝑥) cannot be worse than 1/(𝑥 − 𝑥0), and that in 𝑄(𝑥) cannot 

be worse than 1/(𝑥 − 𝑥0)2.  

If we consider Legendre’s equation in the form 

𝑦′′ −
2𝑥

1 − 𝑥2
𝑦′ +

𝑝(𝑝 + 1)

1 − 𝑥2
𝑦 = 0 

it is clear that x = 1 and x = −1 are singular points. The first is regular because 

(𝑥 − 1)𝑃(𝑥) =
2𝑥

𝑥 + 1
 and (𝑥 − 1)2𝑄(𝑥) = −

(𝑥 − 1)𝑝(𝑝 + 1)

𝑥 + 1
 

are analytic at x = 1, and the second is also regular for similar reasons. 

Example: Bessel’s equation of order p, where p is a nonnegative constant: 

𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 𝑝2)𝑦 = 0 

If this is written in the form 

𝑦′′ +
1

𝑥
𝑦′ +

𝑥2 − 𝑝2

𝑥2
𝑦 = 0, 

it is apparent that the origin is a regular singular point because𝑥𝑃(𝑥) = 1 and 

𝑥2𝑄(𝑥) = 𝑥2 − 𝑝2 are analytic at x = 0.  
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CONCLUSION 

The purpose of this project gives a simple account of series solution of first 

order equation, second order linear equation, ordinary points. The study of these 

topics given excellent introduction to the subject called ‘POWER SERIES’ 

we used application of  power series extensively throughout this project. We 

take it for granted that most readers are reasonably well acquainted with these 

series from an earlier course in calculus. Nevertheless, for the benefit of those 

whose familiarity with this topic may have faded slightly, we presented a brief 

review of the main facts of power series. 
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INTRODUCTION 

 

A  Number Theoretic Function is a complex valued function defined for all positive 

integers. In Number Theory, there exist many number theoretic functions. This 

includes Divisor Function, Sigma Function, Euler’s-Phi Function and Mobius 

Function. All these functions play a very important role in the field of Number 

Theory. 

In the first chapter we will discuss about Arithmetic Function. In the second chapter 

we will introduce Euler’s-Phi Function and Mobius Function. 
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PRELIMINARY  

Let n be a fixed positive integer. Two integers a and b are said to be congruent 

modulo n, symbolized by 

a ≡ b (mod n) 

if n divides the difference a − b; that is, provided that a − b = kn for some integer k. 

Example: 

To fix the idea, consider n = 7. It is routine to check that 

3 ≡ 24 (mod 7)        − 31 ≡ 11 (mod 7)          − 15 ≡ −64 (mod 7) 

Because  3 − 24 = (−3)7,   −31 − 11 = (−6)7   and  −15 − (−64) = 77. When 

n does not divide (a − b),  we say that a is incongruent to b modulo n, and in this case 

we write 

a ≢ b (mod n). For a simple example: 25 ≢ 12 (mod 7), because 7 fails to divide 

25 − 12 = 13. 

It is to be noted that any two integers are congruent modulo 1, whereas two integers 

are congruent modulo 2 when they are both even or both odd. In as much as 

congruence modulo 1 is not particularly interesting, the usual practice is to assume 

that  n > 1. 

Remark: 

Given an integer a, let q and r be its quotient and remainder upon division by n,        

so that 

a = qn + r    0 ≤ r < n 

Then, by definition of congruence, a ≡ r (mod n). Because there are n choices for 

r , we see that every integer is congruent modulo n to exactly one of the values 

0, 1, 2, . . . , n − 1;  in particular, a ≡ 0 (mod n) if and only if n | a. 
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Fundamental Theorem of Arithmetic 

is Every integer 𝑛 > 1 can be represented as Product of prime factor in only one way, 

apart from the order of the factors. 

 

Residue 

If a is an integer and 𝑚 is a positive integer then the residue class of a modulo 𝑚 is 

denoted by 𝑎̂ and is given by 

𝑎̂  = {𝑥: 𝑥 ≡ 𝑎(𝑚𝑜𝑑𝑚)}

 = {𝑥: 𝑥 = 𝑎 + 𝑚𝑘,  𝑘 = 0, ±1, ±2, ⋯ }
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CHAPTER 1 

ARITHMETIC FUNCTION 

An arithmetic Function is a function defined on the positive integers which take 

values in the real or complex numbers. i.e., A function   f: N→ C is called an 

arithmetic function. 

An arithmetic function is called multiplicative if f(mn) = f(m)f(n) for all coprime 

natural numbers m and n. 

Examples  

a) Sum of divisors 𝜎(n) 

b) Number of divisors 𝜏(n) 

c) Euler’s function 𝜙(n) 

d) Mobius function 𝜇(n) 

 

Definition 1.1 

Given a positive integer n, let τ (n) denote the number of positive divisors of n and 

σ(n) denote the sum of positive divisors of n. 

Example 

Consider n = 12. Since 12 has the positive divisors 1, 2, 3, 4, 6, 12, we find that 

τ (12) = 6   and   σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 

For the first few integers, 

τ (1) = 1         τ (2) = 2     τ (3) = 2      τ (4) = 3     τ (5) = 2      τ (6) = 4, . . . 

σ(1) = 1,         σ(2) = 3,    σ(3) = 4,      σ(4) = 7 ,    σ(5) = 6,      σ(6) = 12, . . . 

It is not difficult to see that   τ (n) = 2   if and only if n is a prime number; also,        

σ(n) = n + 1   if and only if n is a prime. 
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Theorem 1.1 

If    n = 𝑝1
𝑘1 … … … … . 𝑝𝑟

𝑘𝑟  is the prime factorization of n > 1, then 

(a) τ (n) = (k1+ 1)(k2 + 1) ・ ・ ・ (kr + 1), and   

(b) σ(n) =   
𝑝1

𝑘1+1
−1

𝑝1−1
… … … … … … … .

𝑝𝑟
𝑘𝑟+1

−1

𝑝𝑟−1
 

Proof 

The positive divisors of n are precisely those integers 

d = 𝑝1
𝑎1  𝑝2

𝑎2 … … . . 𝑝𝑟
𝑎𝑟 

where 0 ≤ ai ≤ ki . There are k1 + 1 choices for the exponent a1;  k2 + 1 choices for a2, . 

. . ; and kr + 1 choices for ar . Hence, there are 

(k1 + 1)(k2 + 1) · · · (kr + 1) 

possible divisors of n. 

To evaluate σ(n), consider the product 

(1 + 𝑝1 +  𝑃1
2 + ⋯ … … … 𝑃1

𝐾1) (1 + 𝑝2 +  𝑃2
2 + ⋯ … … … 𝑃2

𝐾2)……………….. 

………….(1 + 𝑝𝑟 +  𝑃𝑟
2 + ⋯ … … … 𝑃𝑟

𝐾𝑟) 

Each positive divisor of n appears once and only once as a term in the expansion of 

this product, so that 

σ(n) = (1 + 𝑝1 +  𝑃1
2 + ⋯ … … … 𝑃1

𝐾1) (1 + 𝑝2 +  𝑃2
2 + ⋯ … … … 𝑃2

𝐾2)……………….. 

            ………….(1 + 𝑝𝑟 +  𝑃𝑟
2 + ⋯ … … … 𝑃𝑟

𝐾𝑟) 

Applying the formula for the sum of a finite geometric series to the ith factor on the 

right-hand side, we get 

(1 + 𝑝𝑖 +  𝑃𝑖
2 + ⋯ … … … 𝑃𝑖

𝐾𝑖) =  
𝑝𝑖

𝑘𝑖+1
− 1

𝑝𝑖 − 1
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It follows that 

 σ(n) =   
𝑝1

𝑘1+1
−1

𝑝1−1
… … … … … … … .

𝑝𝑟
𝑘𝑟+1

−1

𝑝𝑟−1
 . 

 

Corresponding to the ∑ notation for sums, the notation for products may be 

defined using ∏ , the Greek capital letter pi. The restriction delimiting the numbers 

over which the product is to be made is usually put under the  ∏ 

sign. 

Examples 

 

With this convention, the conclusion to Theorem 1.1 takes the compact form: if 

n = 𝑝1
𝑘1  𝑝2

𝑘2 … … . . 𝑝𝑟
𝑘𝑟  is the prime factorization of n > 1, then 

                                                                                        

and                                               
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Theorem 1.2    

The functions τ and σ are both multiplicative functions 

Proof 

Let m and n be relatively prime integers. Because the result is trivially true if 

either m or n is equal to 1, we may assume that m > 1 and n > 1. If 

         

are the prime factorizations of m and n . It follows that the prime factorization of 

the product mn is given by 

                 

Applying to theorem 1.1, we obtain 

                 

In a similar fashion, theorem 1.1 gives 

             

Thus, τ and σ are multiplicative functions. 

Theorem 1.3 

If f is a multiplicative function and F is defined by 

                  

then F is also multiplicative. 
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Proof 

Let m and n be relatively prime positive integers. Then 

             

because every divisor d of mn can be uniquely written as a product of a divisor d1 

of m and a divisor d2 of n, where gcd(d1, d2) = 1. By the definition of a 

multiplicative function, 

              f (d1d2) = f (d1) f (d2) 

It follows that 

              

It might be helpful to take time out and run through the proof of Theorem 1.3 

in a concrete case. Letting m = 8 and n = 3, we have 

                             

= f (1) + f (2) + f (3) + f (4) + f (6) + f (8) + f (12) + f (24) 

= f (1 · 1) + f (2 · 1) + f (1 · 3) + f (4 · 1) + f (2 · 3)+ f (8 · 1) + f (4 · 3) + f (8 · 3) 

= f (1) f (1) + f (2) f (1) + f (1) f (3) + f (4) f (1) + f (2) f (3)+ f (8) f (1)                                             

.   + f (4)f(3)+ f (8) f (3)          
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= [ f (1) + f (2) + f (4) + f (8)][ f (1) + f (3)] 

 

= F(8)F(3) 

Theorem 1.3 provides a deceptively short way of drawing the conclusion that τ 

and σ are multiplicative 

 

The Mangoldt function 𝚲(𝒏) 

Definition 1.2 

For every integer 𝑛 ≥ 1 we define 

Λ(𝑛) = {
log 𝑝  if 𝑛 = 𝑝𝑚 for some prime 𝑝 and some 𝑚 ≥ 1 , 

0  otherwise. 
 

Here is a short table of values of Λ(𝑛) : 

𝑛: 1 2 3 4 5 6 7 8 9 10
Λ(𝑛): 0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0

 

The proof of the next theorem shows how this function arises naturally from the 

fundamental theorem of arithmetic. 

Theorem 1.4 

If 𝑛 ≥ 1 we have 

                                                    log 𝑛 = ∑  

𝑑∣𝑛

Λ(𝑑) … … … … … … … … … … … … (1) 

Proof  

The theorem is true if 𝑛 = 1 since both members are 0 . Therefore, assume that 𝑛 > 1 

and write 
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𝑛 = ∏  

𝑟

𝑘=1

𝑝𝑘 𝑎𝑘 

Taking logarithms we have 

log 𝑛 = ∑  

𝑟

𝑘=1

𝑎𝑘log 𝑝𝑘 

Now consider the sum on the right of (1). The only nonzero terms in the sum come 

from those divisors 𝑑 of the form 𝑝𝑘 𝑚 for 𝑚 = 1,2, … , 𝑎𝑘 and 𝑘 = 1,2, … , 𝑟. Hence 

∑  

𝑑∣𝑛

Λ(𝑑) = ∑  

𝑟

𝑘=1

∑  

𝑎𝑘

𝑚=1

Λ(𝑝𝑘
𝑚) = ∑  

𝑟

𝑘=1

∑  

𝑎𝑘

𝑚=1

log 𝑝𝑘 = ∑  

𝑟

𝑘=1

𝑎𝑘log 𝑝𝑘 = log 𝑛 

which proves (1). 
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CHAPTER 2 

EULER’S 𝝓 FUNCTION 

Let n be positive integer. Let Un denote the set of all positive integers less than n and 

coprime to it 

For example, 

                U6  =  {1,5} 

                U10  =  {1,3,7,9} 

                  U18  =  {1,5,7,11,13,17} 

 

Definition 2.1 

Euler’s 𝜙 function is a function 𝜙: N→N such that for any n ∈ N, 𝜙 (n) is the number 

of integers less than n and coprime to it 

In other words 

‘Euler’s 𝜙 function counts the number of elements in Un’ 

For example,    

𝜙(1) = 1, 𝜙(2) = 1, 𝜙(3) = 2, 𝜙(4) = 2, 𝜙(5) = 4
𝜙(6) = 2 … .

 

Theorem 2.1 

Let p be a prime. Then 𝜙 (p) = p-1 

Proof: 

By definition, any natural number strictly less than p is coprime to p, hence 

   𝜙 (p) = p-1  

 

Theorem 2.2 

If 𝑝 is a prime and 𝑘 > 0, then 

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1) 
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Proof: 

Consider the successive pk natural numbers not greater than pk  arranged in the 

following rectangular array of  p columns and  pk-1 rows 

1     2          .       .     p  

p+1     p+2          .       .    2p 

.     .          .       .     . 

.     .          .       .     .  

pk-p+1     pk-p+2      .      .     pk 

among these numbers only the ones at the rightmost sides are not coprime to pk and 

there are pk-1 members in that column. So  

   

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1). 

 

For example,  𝜙(8) = 23 − 22 = 4  which counts the number of elements in the set 

 U8  =  {1,3,5,7} 

By the fundamental theorem of arithmetic, we can write any natural number n as  

                                    n= 𝑝1
𝑘1 … … … . . 𝑝𝑟

𝑘𝑟 

where 𝑃𝑖  ‘s are distinct prime and k𝑖 ≥ 1  are integers. We already know how to find 

𝜙(𝑝𝑖
𝑘𝑖)  we would lie to see how 𝜙(𝑛) is related to 𝜙(𝑝𝑖

𝑘𝑖). This follows from a very 

important property of Euler’s 𝜙 Function 

 

Multiplicativity of Euler’s 𝝓 Function 

Theorem 2.3 

𝜙(mn) = 𝜙(m)𝜙(n) if  m and n are coprime natural numbers. 

Proof: 
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Consider the array of natural numbers not greater than mn arranged in m columns  and 

n rows in the following manner 

1 2 ⋯ 𝑟 ⋯ 𝑚
𝑚 + 1 𝑚 + 2 𝑚 + 𝑟 2𝑚

2𝑚 + 1 2𝑚 + 2 2𝑚 + 𝑟 3𝑚
⋮ ⋮ ⋮ ⋮

(𝑛 − 1)𝑚 + 1 (𝑛 − 1)𝑚 + 2 (𝑛 − 1)𝑚 + 𝑟 𝑛𝑚

 

Clearly each row of the above array has m distinct residues modulo m. Each column 

has n distinct residues modulo n: for 1 ≤ 𝑖, 𝑖 ≤ 𝑛 − 1 

im +j ≡ im + j (mod n) 

⇒ im ≡ im (mod n) 

⇒ i ≡ i (mod n)      (as gcd(m,n) = 1) 

⇒ i ≡ i 

Each row has 𝜙(m) residues coprime to m, and each column has 𝜙(n) residues 

coprime to n. Hence in total 𝜙(m)𝜙(n) elements in the above array which are 

coprime to both m and n, it follows that 

𝜙(mn) = 𝜙(m)𝜙(n) 

 

Theorem 2.4  

Let n be any natural numbers, then  

𝜙(𝑛) = 𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) ⋯ (1 −

1

𝑝𝑟
)  

Proof:   

By fundamental theorem of arithmetic, we can write  

𝑛 = 𝑃1
𝑘1𝑃2

𝑘2 … … . … 𝑃𝑟
𝑘𝑟 

Where 𝑝𝑖 are the distinct prime factor of n, and 𝑘𝑖 are the non negative integers. By 

previous theorem and proposition, 

  𝜙(𝑛) = 𝜙(𝑝1
𝑘1) ⋅ … , 𝜙(𝑝𝑟

𝑘𝑟) 

            =  𝑃1
𝑘1−1(𝑃1 − 1) ⋯ 𝑃𝑟

𝑘𝑟−1(𝑃𝑟 − 1) 
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            =  𝑝1
𝑘1 (1 −

1

𝑃1
) ⋯ 𝑃𝑟

𝑘𝑟 (1 −
1

𝑃𝑟
) 

   =  𝑛 (1 −
1

𝑝1
) ⋯ ⋅ (1 −

1

𝑝𝑟
)  

Theorem 2.5 

For n > 2,  𝜙 (n) is an even integer. 

Proof: 

First, assume that n is a power of 2, let us say that n = 2k ,  with k ≥ 2. By 

theorem 2.2, 

𝜙(𝑛) = 𝜙(2𝑘) = 2𝑘 (1 −
1

2
) = 2𝑘−1 

an even integer. If 𝑛 does not happen to be a power of 2, then it is divisible by an odd 

prime 𝑝; we therefore may write 𝑛 as 𝑛 = 𝑝𝑘𝑚, where 𝑘 ≥ 1 and gcd (𝑝𝑘, 𝑚) = 1. 

Exploiting the multiplicative nature of the phi-function, we obtain 

                                       𝜙(𝑛) = 𝜙(𝑝𝑘)𝜙(𝑚) = 𝑝𝑘−1(𝑝 − 1)𝜙(𝑚) 

which again is even because 2 | p – 1. 

 

Theorem 2.6 

For each positive integer n, 

  

𝑛 = ∑  

𝑑∣𝑛

𝜙(𝑑) 

Proof: 

Let us partition the set {1,2,…….,n} into mutually disjoint subsets Sd for each d/n, 

where  

𝑆𝑑 = {1 ≤ 𝑚 ≤ 𝑛 ∣ gcd (𝑚, 𝑛) = 𝑑} 

                                              =  {1 ≤
𝑚

𝑑
≤

𝑛

𝑑
∣ gcd (

𝑚

𝑑
,

𝑛

𝑑
) = 1} 

Then 
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 {1,2, … … . , n}  = ∑  

𝑑∣𝑛

𝑆𝑑 

⇒            𝑛 = ∑  

𝑑∣𝑛

𝜙 (
𝑛

𝑑
) 

                    = ∑  

𝑑∣𝑛

𝜙(𝑑) 

As for each divisor of n, n/d is also a divisor of n 

 

MOBIUS FUNCTION 

Definition 2.2 

The Mobius function  𝜇: 𝑁 ⟶ {0, ±1} is defined as  

𝜇(𝑛) = {

1     if 𝑛 = 1
0     if 𝑝2 𝑛⁄  for some prime 𝑝
(−1)𝑟      if 𝑛 = 𝑝1𝑝2 ⋯ 𝑝𝑟 , where 𝑝𝑖 are distinct primes 

 

For example,  

μ(1) = 1          μ(2) = −1              μ(3) = −1 

 μ(4) = 0        μ(5) = −1               μ(6) = 1 

If 𝑝 is a prime number, it is clear that 𝜇(𝑝) = −1; in addition, 𝜇(𝑝𝑒) = 0 for 𝑒 ≥ 2. 

Theorem 2.7 

The Mobius function is a multiplicative function i.e.  

μ(mn) = μ(m)μ(n), if m and n are relatively prime 

Proof: 

Let m and n be coprime integers, we can consider the following to cases 

Case 1:  let μ(mn) = 0 then there is a prime p such that  
𝑝2

𝑚𝑛⁄ . As m and n are 

coprime p cannot divide both m and n hence either 
𝑝2

𝑚⁄  or  
𝑝2

𝑛⁄  . Therefore either   

μ(m) = 0 or μ(n) = 0 and we have μ(mn) = μ(m)μ(n) 

Case 2: suppose that μ(mn) ≠ 0 then mn is square free, hence so are m and n. let  



16 
 

𝑚 =  𝑝1 … … … 𝑝𝑟   and 𝑛 =  𝑞1 … … … 𝑞𝑠   where 𝑝𝑖 𝑎𝑛𝑑 𝑞𝑗  are all distinct primes then 

mn = 𝑝1 … … … 𝑝𝑟𝑞1 … … … 𝑞𝑠 where all the primes occurring in the factorization of 

mn are distinct. Hence  

 𝜇(𝑚𝑛) = (−1)𝑟+𝑠   

              = (−1)𝑟(−1)𝑠        

              =  μ(m)μ(n) 

Theorem 2.8 

      

∑  

𝑑∣𝑛

𝜇(𝑑) = {
1     if 𝑛 = 1
0     if 𝑛 > 1

 

Where d runs through all the positive divisors of n. 

Proof:  

𝐿𝑒𝑡   𝐹(𝑛)  = ∑  

𝑑∣𝑛

𝜇(𝑑) 

As  μ is multiplicative, so is F(n) by the theorem (F be a multiplicative arithmetic  

function  𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑)  then F is also a multiplicative arthmetic function)  

Clearly  

𝐹(1) = ∑  

𝑑∣𝑛

𝜇(𝑑) 

             = μ(1) 

             = 1 

For integers which are  prime power, i.e. of the form pk for some k ≥ 1 

                                    𝐹(𝑝2) = μ(1) + μ(p) + μ(p2) + ⋯ … … … . . +μ(p𝑘)    

                  = 1 + (-1) + 0……………+ 0 

                 = 0 

Now consider any integer n, and consider its prime factorization. Then  

      𝑛 = 𝑝1
𝑘1 … … … … … . 𝑝𝑟

𝑘𝑟 ,         𝑘𝑖 ≥ 1 
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 ⇒    𝐹(𝑛) =  ∏𝐹(𝑝𝑖
𝑘𝑖) 

        = 0 

Mobius inversion formula 

The following theorem is known as Mobius inversion formula 

Theorem 2.9 

Let F and  f  be two function from the set N of natural number to the field complex 

number C such that  

𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑) 

Then we can express f(n) as   

𝑓(𝑛) = ∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) 

         = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝐹(𝑑) 

Proof: 

First observe that if d is divisor of n so is n/d. Hence both the summation in the last 

line of  the theorem are same. Now  

∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) = ∑  

𝑑∣𝑛

(𝜇(𝑑) ∑  

𝑐∣(𝑛/𝑑)

𝑓(𝑐)) 

The crucial step in the proof  is to observe that the set of S of pairs of integers (c,d) 

with d|n and c|n/d is the same as the set T of pairs (c,d) with c/n and d|n/c. 

∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) = ∑  

𝑑∣𝑛

(𝜇(𝑑) ∑  

𝑐∣(𝑛/𝑑)

𝑓(𝑐)) 

      

                           = ∑  

𝑑∣𝑛

( ∑  

𝑐∣(𝑛/𝑑)

𝜇(𝑑)𝑓(𝑐)) 
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             = ∑  

(𝑐,𝑑)∈𝑆

𝑓(𝑐)𝜇(𝑑) 

           = ∑  
(𝑐,𝑑)∈𝑇

𝑓(𝑐)𝜇(𝑑) 

                         = ∑  

𝑐∣𝑛

(𝑓(𝑐) ∑  

𝑑∣(𝑛/𝑐)

𝜇(𝑑)) 

       = F(n) 

𝐴𝑠 ∑  

𝑑∣𝑛

𝜇(𝑑) = 0    𝑢𝑛𝑙𝑒𝑠𝑠 𝑛
𝑐⁄ = 1, which happens when c = n  

Let us demonstrate this with n = 15  

∑  

𝑑∣15

𝜇(𝑑)𝐹 (
15

𝑑
) = 𝜇(1)[ 𝑓 (1) +  𝑓 (3) +  𝑓 (5) +  𝑓 (15)] + 𝜇(3)[ 𝑓 (1) +  𝑓 (5)] 

                                +𝜇(5)[ 𝑓 (1) +  𝑓 (3)] + 𝜇(15)[ 𝑓 (1)] 

                             = f (1)[μ(1) + μ(3) + μ(5) + μ(15)] + f (3)[μ(1) + μ(5)] + f (5)[μ(1) + 

                               μ (5)] + f(15) μ(1) 

                            = f(1).0 + f(3).0 + f(5).0 + f(15) 

                            = f(15) 

The above theorem leads to the following interesting identities  

1. we know that for any positive integer n,  

∑  

𝑑∣𝑛

𝜙(𝑑) = 𝑛 

Where 𝜙(𝑛) is Euler’s 𝜙 function. Hence  

𝜙(𝑛) =  ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝑑 

For example, 

𝜙(10) =  μ(1)10 +  μ(2)5 +  μ(5)2 + μ(10)1   
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                                               = 10 - 5 – 2 + 1 

                                               = 4 

2. similarly  

 

𝜎(𝑛) = ∑  

𝑑∣𝑛

𝑑 

                      𝑛   = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝜎(𝑑) 

For example, 

With n = 10  

μ(10). 1 + μ(2)(1 + 5) + μ(5)(1 + 3) + μ(1)(1 + 3 + 5 + 10) 

                = 1 – 1 – 5 – 1 – 3 + 1 + 3 +5 + 10 

     = 10 

We have seen before that if multiplicative so is 𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑). But we can now 

Prove that converse applying the Mobius inversion formula 

Theorem 2.10 

If F is a multiplicative function and 

𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑) 

then f is also multiplicative. 

Proof: 

By the Mobius inversion formula we know that  

𝑓(𝑛) = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝐹(𝑑) 

Let m and n be relatively prime positive integers. We recall that any divisor 

d of mn can be uniquely written as d = d1, d2, where d1 |m, d2 | n, and  

gcd(d1, d2) = 1 = gcd(
𝑚

𝑑1
,

𝑛

𝑑2
). 
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Conversely if d1/m and d2/n then d1d2/mn    thus, 

𝑓(𝑚𝑛) = ∑  

𝑑∣𝑚𝑛

𝜇(𝑑)𝐹 (
𝑚𝑛

𝑑
)

= ∑  
𝑑1|𝑚
𝑑2|𝑛

𝜇(𝑑1𝑑2)𝐹 (
𝑚𝑛

𝑑1𝑑2

)

= ∑  
𝑑1|𝑚
𝑑2|𝑛

𝜇(𝑑1)𝜇(𝑑2)𝐹 (
𝑚

𝑑1

) 𝐹 (
𝑛

𝑑2

)

= ∑  

𝑑1∣𝑚

𝜇(𝑑1)𝐹 (
𝑚

𝑑1

) ∑  

𝑑2∣𝑛

𝜇(𝑑2)𝐹 (
𝑛

𝑑2

)

= 𝑓(𝑚)𝑓(𝑛)

 

In view of the above theorem we can say that as N(n) = n is a multiplicative function 

so is 𝜙(𝑛) because  

∑  

𝑑∣𝑛

𝜙(𝑑) = 𝑛 =  N(n)  
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CONCLUSION 

 

The purpose of this project gives a simple account of Arithmetic function, Euler’s phi 

function and Mobius Function. The study of these topics given excellent introduction 

to the subject called ‘NUMBER THEORETIC FUNCTION’ 

Number Theoretic Function demands a high standard of rigor. Thus, our presentation 

necessarily has its formal aspect with care taken to present clear and detailed 

argument. An understanding of the statement of the theorem, number theory proof is 

the important issue. In the first chapter we discuss about function τ and σ are both 

multiplicative function. If f is a multiplicative function and F is defined by  

𝐹(𝑛) = ∑  𝑑∣𝑛 𝑓(𝑑), then F is also multiplicative. In the second chapter 2 we discuss 

about that if p is prime the 𝜙(𝑝) = 𝑝 − 1, 𝜙(𝑚𝑛) = 𝜙(𝑚)𝜙(𝑛). The Mobius 

function is multiplicative function if f is multiplicative function and  𝐹(𝑛)=∑  𝑑∣𝑛 𝑓(𝑑), 

then F is also multiplicative. 
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INTRODUCTION 

 

A  Number Theoretic Function is a complex valued function defined for all positive 

integers. In Number Theory, there exist many number theoretic functions. This 

includes Divisor Function, Sigma Function, Euler’s-Phi Function and Mobius 

Function. All these functions play a very important role in the field of Number 

Theory. 

In the first chapter we will discuss about Arithmetic Function. In the second chapter 

we will introduce Euler’s-Phi Function and Mobius Function. 
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PRELIMINARY  

Let n be a fixed positive integer. Two integers a and b are said to be congruent 

modulo n, symbolized by 

a ≡ b (mod n) 

if n divides the difference a − b; that is, provided that a − b = kn for some integer k. 

Example: 

To fix the idea, consider n = 7. It is routine to check that 

3 ≡ 24 (mod 7)        − 31 ≡ 11 (mod 7)          − 15 ≡ −64 (mod 7) 

Because  3 − 24 = (−3)7,   −31 − 11 = (−6)7   and  −15 − (−64) = 77. When 

n does not divide (a − b),  we say that a is incongruent to b modulo n, and in this case 

we write 

a ≢ b (mod n). For a simple example: 25 ≢ 12 (mod 7), because 7 fails to divide 

25 − 12 = 13. 

It is to be noted that any two integers are congruent modulo 1, whereas two integers 

are congruent modulo 2 when they are both even or both odd. In as much as 

congruence modulo 1 is not particularly interesting, the usual practice is to assume 

that  n > 1. 

Remark: 

Given an integer a, let q and r be its quotient and remainder upon division by n,        

so that 

a = qn + r    0 ≤ r < n 

Then, by definition of congruence, a ≡ r (mod n). Because there are n choices for 

r , we see that every integer is congruent modulo n to exactly one of the values 

0, 1, 2, . . . , n − 1;  in particular, a ≡ 0 (mod n) if and only if n | a. 
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Fundamental Theorem of Arithmetic 

is Every integer 𝑛 > 1 can be represented as Product of prime factor in only one way, 

apart from the order of the factors. 

 

Residue 

If a is an integer and 𝑚 is a positive integer then the residue class of a modulo 𝑚 is 

denoted by 𝑎̂ and is given by 

𝑎̂  = {𝑥: 𝑥 ≡ 𝑎(𝑚𝑜𝑑𝑚)}

 = {𝑥: 𝑥 = 𝑎 + 𝑚𝑘,  𝑘 = 0, ±1, ±2, ⋯ }
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CHAPTER 1 

ARITHMETIC FUNCTION 

An arithmetic Function is a function defined on the positive integers which take 

values in the real or complex numbers. i.e., A function   f: N→ C is called an 

arithmetic function. 

An arithmetic function is called multiplicative if f(mn) = f(m)f(n) for all coprime 

natural numbers m and n. 

Examples  

a) Sum of divisors 𝜎(n) 

b) Number of divisors 𝜏(n) 

c) Euler’s function 𝜙(n) 

d) Mobius function 𝜇(n) 

 

Definition 1.1 

Given a positive integer n, let τ (n) denote the number of positive divisors of n and 

σ(n) denote the sum of positive divisors of n. 

Example 

Consider n = 12. Since 12 has the positive divisors 1, 2, 3, 4, 6, 12, we find that 

τ (12) = 6   and   σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 

For the first few integers, 

τ (1) = 1         τ (2) = 2     τ (3) = 2      τ (4) = 3     τ (5) = 2      τ (6) = 4, . . . 

σ(1) = 1,         σ(2) = 3,    σ(3) = 4,      σ(4) = 7 ,    σ(5) = 6,      σ(6) = 12, . . . 

It is not difficult to see that   τ (n) = 2   if and only if n is a prime number; also,        

σ(n) = n + 1   if and only if n is a prime. 
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Theorem 1.1 

If    n = 𝑝1
𝑘1 … … … … . 𝑝𝑟

𝑘𝑟  is the prime factorization of n > 1, then 

(a) τ (n) = (k1+ 1)(k2 + 1) ・ ・ ・ (kr + 1), and   

(b) σ(n) =   
𝑝1

𝑘1+1
−1

𝑝1−1
… … … … … … … .

𝑝𝑟
𝑘𝑟+1

−1

𝑝𝑟−1
 

Proof 

The positive divisors of n are precisely those integers 

d = 𝑝1
𝑎1  𝑝2

𝑎2 … … . . 𝑝𝑟
𝑎𝑟 

where 0 ≤ ai ≤ ki . There are k1 + 1 choices for the exponent a1;  k2 + 1 choices for a2, . 

. . ; and kr + 1 choices for ar . Hence, there are 

(k1 + 1)(k2 + 1) · · · (kr + 1) 

possible divisors of n. 

To evaluate σ(n), consider the product 

(1 + 𝑝1 +  𝑃1
2 + ⋯ … … … 𝑃1

𝐾1) (1 + 𝑝2 +  𝑃2
2 + ⋯ … … … 𝑃2

𝐾2)……………….. 

………….(1 + 𝑝𝑟 +  𝑃𝑟
2 + ⋯ … … … 𝑃𝑟

𝐾𝑟) 

Each positive divisor of n appears once and only once as a term in the expansion of 

this product, so that 

σ(n) = (1 + 𝑝1 +  𝑃1
2 + ⋯ … … … 𝑃1

𝐾1) (1 + 𝑝2 +  𝑃2
2 + ⋯ … … … 𝑃2

𝐾2)……………….. 

            ………….(1 + 𝑝𝑟 +  𝑃𝑟
2 + ⋯ … … … 𝑃𝑟

𝐾𝑟) 

Applying the formula for the sum of a finite geometric series to the ith factor on the 

right-hand side, we get 

(1 + 𝑝𝑖 +  𝑃𝑖
2 + ⋯ … … … 𝑃𝑖

𝐾𝑖) =  
𝑝𝑖

𝑘𝑖+1
− 1

𝑝𝑖 − 1
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It follows that 

 σ(n) =   
𝑝1

𝑘1+1
−1

𝑝1−1
… … … … … … … .

𝑝𝑟
𝑘𝑟+1

−1

𝑝𝑟−1
 . 

 

Corresponding to the ∑ notation for sums, the notation for products may be 

defined using ∏ , the Greek capital letter pi. The restriction delimiting the numbers 

over which the product is to be made is usually put under the  ∏ 

sign. 

Examples 

 

With this convention, the conclusion to Theorem 1.1 takes the compact form: if 

n = 𝑝1
𝑘1  𝑝2

𝑘2 … … . . 𝑝𝑟
𝑘𝑟  is the prime factorization of n > 1, then 

                                                                                        

and                                               
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Theorem 1.2    

The functions τ and σ are both multiplicative functions 

Proof 

Let m and n be relatively prime integers. Because the result is trivially true if 

either m or n is equal to 1, we may assume that m > 1 and n > 1. If 

         

are the prime factorizations of m and n . It follows that the prime factorization of 

the product mn is given by 

                 

Applying to theorem 1.1, we obtain 

                 

In a similar fashion, theorem 1.1 gives 

             

Thus, τ and σ are multiplicative functions. 

Theorem 1.3 

If f is a multiplicative function and F is defined by 

                  

then F is also multiplicative. 
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Proof 

Let m and n be relatively prime positive integers. Then 

             

because every divisor d of mn can be uniquely written as a product of a divisor d1 

of m and a divisor d2 of n, where gcd(d1, d2) = 1. By the definition of a 

multiplicative function, 

              f (d1d2) = f (d1) f (d2) 

It follows that 

              

It might be helpful to take time out and run through the proof of Theorem 1.3 

in a concrete case. Letting m = 8 and n = 3, we have 

                             

= f (1) + f (2) + f (3) + f (4) + f (6) + f (8) + f (12) + f (24) 

= f (1 · 1) + f (2 · 1) + f (1 · 3) + f (4 · 1) + f (2 · 3)+ f (8 · 1) + f (4 · 3) + f (8 · 3) 

= f (1) f (1) + f (2) f (1) + f (1) f (3) + f (4) f (1) + f (2) f (3)+ f (8) f (1)                                             

.   + f (4)f(3)+ f (8) f (3)          
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= [ f (1) + f (2) + f (4) + f (8)][ f (1) + f (3)] 

 

= F(8)F(3) 

Theorem 1.3 provides a deceptively short way of drawing the conclusion that τ 

and σ are multiplicative 

 

The Mangoldt function 𝚲(𝒏) 

Definition 1.2 

For every integer 𝑛 ≥ 1 we define 

Λ(𝑛) = {
log 𝑝  if 𝑛 = 𝑝𝑚 for some prime 𝑝 and some 𝑚 ≥ 1 , 

0  otherwise. 
 

Here is a short table of values of Λ(𝑛) : 

𝑛: 1 2 3 4 5 6 7 8 9 10
Λ(𝑛): 0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0

 

The proof of the next theorem shows how this function arises naturally from the 

fundamental theorem of arithmetic. 

Theorem 1.4 

If 𝑛 ≥ 1 we have 

                                                    log 𝑛 = ∑  

𝑑∣𝑛

Λ(𝑑) … … … … … … … … … … … … (1) 

Proof  

The theorem is true if 𝑛 = 1 since both members are 0 . Therefore, assume that 𝑛 > 1 

and write 
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𝑛 = ∏  

𝑟

𝑘=1

𝑝𝑘 𝑎𝑘 

Taking logarithms we have 

log 𝑛 = ∑  

𝑟

𝑘=1

𝑎𝑘log 𝑝𝑘 

Now consider the sum on the right of (1). The only nonzero terms in the sum come 

from those divisors 𝑑 of the form 𝑝𝑘 𝑚 for 𝑚 = 1,2, … , 𝑎𝑘 and 𝑘 = 1,2, … , 𝑟. Hence 

∑  

𝑑∣𝑛

Λ(𝑑) = ∑  

𝑟

𝑘=1

∑  

𝑎𝑘

𝑚=1

Λ(𝑝𝑘
𝑚) = ∑  

𝑟

𝑘=1

∑  

𝑎𝑘

𝑚=1

log 𝑝𝑘 = ∑  

𝑟

𝑘=1

𝑎𝑘log 𝑝𝑘 = log 𝑛 

which proves (1). 
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CHAPTER 2 

EULER’S 𝝓 FUNCTION 

Let n be positive integer. Let Un denote the set of all positive integers less than n and 

coprime to it 

For example, 

                U6  =  {1,5} 

                U10  =  {1,3,7,9} 

                  U18  =  {1,5,7,11,13,17} 

 

Definition 2.1 

Euler’s 𝜙 function is a function 𝜙: N→N such that for any n ∈ N, 𝜙 (n) is the number 

of integers less than n and coprime to it 

In other words 

‘Euler’s 𝜙 function counts the number of elements in Un’ 

For example,    

𝜙(1) = 1, 𝜙(2) = 1, 𝜙(3) = 2, 𝜙(4) = 2, 𝜙(5) = 4
𝜙(6) = 2 … .

 

Theorem 2.1 

Let p be a prime. Then 𝜙 (p) = p-1 

Proof: 

By definition, any natural number strictly less than p is coprime to p, hence 

   𝜙 (p) = p-1  

 

Theorem 2.2 

If 𝑝 is a prime and 𝑘 > 0, then 

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1) 
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Proof: 

Consider the successive pk natural numbers not greater than pk  arranged in the 

following rectangular array of  p columns and  pk-1 rows 

1     2          .       .     p  

p+1     p+2          .       .    2p 

.     .          .       .     . 

.     .          .       .     .  

pk-p+1     pk-p+2      .      .     pk 

among these numbers only the ones at the rightmost sides are not coprime to pk and 

there are pk-1 members in that column. So  

   

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1). 

 

For example,  𝜙(8) = 23 − 22 = 4  which counts the number of elements in the set 

 U8  =  {1,3,5,7} 

By the fundamental theorem of arithmetic, we can write any natural number n as  

                                    n= 𝑝1
𝑘1 … … … . . 𝑝𝑟

𝑘𝑟 

where 𝑃𝑖  ‘s are distinct prime and k𝑖 ≥ 1  are integers. We already know how to find 

𝜙(𝑝𝑖
𝑘𝑖)  we would lie to see how 𝜙(𝑛) is related to 𝜙(𝑝𝑖

𝑘𝑖). This follows from a very 

important property of Euler’s 𝜙 Function 

 

Multiplicativity of Euler’s 𝝓 Function 

Theorem 2.3 

𝜙(mn) = 𝜙(m)𝜙(n) if  m and n are coprime natural numbers. 

Proof: 
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Consider the array of natural numbers not greater than mn arranged in m columns  and 

n rows in the following manner 

1 2 ⋯ 𝑟 ⋯ 𝑚
𝑚 + 1 𝑚 + 2 𝑚 + 𝑟 2𝑚

2𝑚 + 1 2𝑚 + 2 2𝑚 + 𝑟 3𝑚
⋮ ⋮ ⋮ ⋮

(𝑛 − 1)𝑚 + 1 (𝑛 − 1)𝑚 + 2 (𝑛 − 1)𝑚 + 𝑟 𝑛𝑚

 

Clearly each row of the above array has m distinct residues modulo m. Each column 

has n distinct residues modulo n: for 1 ≤ 𝑖, 𝑖 ≤ 𝑛 − 1 

im +j ≡ im + j (mod n) 

⇒ im ≡ im (mod n) 

⇒ i ≡ i (mod n)      (as gcd(m,n) = 1) 

⇒ i ≡ i 

Each row has 𝜙(m) residues coprime to m, and each column has 𝜙(n) residues 

coprime to n. Hence in total 𝜙(m)𝜙(n) elements in the above array which are 

coprime to both m and n, it follows that 

𝜙(mn) = 𝜙(m)𝜙(n) 

 

Theorem 2.4  

Let n be any natural numbers, then  

𝜙(𝑛) = 𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) ⋯ (1 −

1

𝑝𝑟
)  

Proof:   

By fundamental theorem of arithmetic, we can write  

𝑛 = 𝑃1
𝑘1𝑃2

𝑘2 … … . … 𝑃𝑟
𝑘𝑟 

Where 𝑝𝑖 are the distinct prime factor of n, and 𝑘𝑖 are the non negative integers. By 

previous theorem and proposition, 

  𝜙(𝑛) = 𝜙(𝑝1
𝑘1) ⋅ … , 𝜙(𝑝𝑟

𝑘𝑟) 

            =  𝑃1
𝑘1−1(𝑃1 − 1) ⋯ 𝑃𝑟

𝑘𝑟−1(𝑃𝑟 − 1) 
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            =  𝑝1
𝑘1 (1 −

1

𝑃1
) ⋯ 𝑃𝑟

𝑘𝑟 (1 −
1

𝑃𝑟
) 

   =  𝑛 (1 −
1

𝑝1
) ⋯ ⋅ (1 −

1

𝑝𝑟
)  

Theorem 2.5 

For n > 2,  𝜙 (n) is an even integer. 

Proof: 

First, assume that n is a power of 2, let us say that n = 2k ,  with k ≥ 2. By 

theorem 2.2, 

𝜙(𝑛) = 𝜙(2𝑘) = 2𝑘 (1 −
1

2
) = 2𝑘−1 

an even integer. If 𝑛 does not happen to be a power of 2, then it is divisible by an odd 

prime 𝑝; we therefore may write 𝑛 as 𝑛 = 𝑝𝑘𝑚, where 𝑘 ≥ 1 and gcd (𝑝𝑘, 𝑚) = 1. 

Exploiting the multiplicative nature of the phi-function, we obtain 

                                       𝜙(𝑛) = 𝜙(𝑝𝑘)𝜙(𝑚) = 𝑝𝑘−1(𝑝 − 1)𝜙(𝑚) 

which again is even because 2 | p – 1. 

 

Theorem 2.6 

For each positive integer n, 

  

𝑛 = ∑  

𝑑∣𝑛

𝜙(𝑑) 

Proof: 

Let us partition the set {1,2,…….,n} into mutually disjoint subsets Sd for each d/n, 

where  

𝑆𝑑 = {1 ≤ 𝑚 ≤ 𝑛 ∣ gcd (𝑚, 𝑛) = 𝑑} 

                                              =  {1 ≤
𝑚

𝑑
≤

𝑛

𝑑
∣ gcd (

𝑚

𝑑
,

𝑛

𝑑
) = 1} 

Then 



15 
 

 {1,2, … … . , n}  = ∑  

𝑑∣𝑛

𝑆𝑑 

⇒            𝑛 = ∑  

𝑑∣𝑛

𝜙 (
𝑛

𝑑
) 

                    = ∑  

𝑑∣𝑛

𝜙(𝑑) 

As for each divisor of n, n/d is also a divisor of n 

 

MOBIUS FUNCTION 

Definition 2.2 

The Mobius function  𝜇: 𝑁 ⟶ {0, ±1} is defined as  

𝜇(𝑛) = {

1     if 𝑛 = 1
0     if 𝑝2 𝑛⁄  for some prime 𝑝

(−1)𝑟      if 𝑛 = 𝑝1𝑝2 ⋯ 𝑝𝑟 , where 𝑝𝑖 are distinct primes 

 

For example,  

μ(1) = 1          μ(2) = −1              μ(3) = −1 

 μ(4) = 0        μ(5) = −1               μ(6) = 1 

If 𝑝 is a prime number, it is clear that 𝜇(𝑝) = −1; in addition, 𝜇(𝑝𝑒) = 0 for 𝑒 ≥ 2. 

Theorem 2.7 

The Mobius function is a multiplicative function i.e.  

μ(mn) = μ(m)μ(n), if m and n are relatively prime 

Proof: 

Let m and n be coprime integers, we can consider the following to cases 

Case 1:  let μ(mn) = 0 then there is a prime p such that  
𝑝2

𝑚𝑛⁄ . As m and n are 

coprime p cannot divide both m and n hence either 
𝑝2

𝑚⁄  or  
𝑝2

𝑛⁄  . Therefore either   

μ(m) = 0 or μ(n) = 0 and we have μ(mn) = μ(m)μ(n) 

Case 2: suppose that μ(mn) ≠ 0 then mn is square free, hence so are m and n. let  
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𝑚 =  𝑝1 … … … 𝑝𝑟   and 𝑛 =  𝑞1 … … … 𝑞𝑠   where 𝑝𝑖 𝑎𝑛𝑑 𝑞𝑗  are all distinct primes then 

mn = 𝑝1 … … … 𝑝𝑟𝑞1 … … … 𝑞𝑠 where all the primes occurring in the factorization of 

mn are distinct. Hence  

 𝜇(𝑚𝑛) = (−1)𝑟+𝑠   

              = (−1)𝑟(−1)𝑠        

              =  μ(m)μ(n) 

Theorem 2.8 

      

∑  

𝑑∣𝑛

𝜇(𝑑) = {
1     if 𝑛 = 1
0     if 𝑛 > 1

 

Where d runs through all the positive divisors of n. 

Proof:  

𝐿𝑒𝑡   𝐹(𝑛)  = ∑  

𝑑∣𝑛

𝜇(𝑑) 

As  μ is multiplicative, so is F(n) by the theorem (F be a multiplicative arithmetic  

function  𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑)  then F is also a multiplicative arthmetic function)  

Clearly  

𝐹(1) = ∑  

𝑑∣𝑛

𝜇(𝑑) 

             = μ(1) 

             = 1 

For integers which are  prime power, i.e. of the form pk for some k ≥ 1 

                                    𝐹(𝑝2) = μ(1) + μ(p) + μ(p2) + ⋯ … … … . . +μ(p𝑘)    

                  = 1 + (-1) + 0……………+ 0 

                 = 0 

Now consider any integer n, and consider its prime factorization. Then  

      𝑛 = 𝑝1
𝑘1 … … … … … . 𝑝𝑟

𝑘𝑟 ,         𝑘𝑖 ≥ 1 
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 ⇒    𝐹(𝑛) =  ∏𝐹(𝑝𝑖
𝑘𝑖) 

        = 0 

Mobius inversion formula 

The following theorem is known as Mobius inversion formula 

Theorem 2.9 

Let F and  f  be two function from the set N of natural number to the field complex 

number C such that  

𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑) 

Then we can express f(n) as   

𝑓(𝑛) = ∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) 

         = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝐹(𝑑) 

Proof: 

First observe that if d is divisor of n so is n/d. Hence both the summation in the last 

line of  the theorem are same. Now  

∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) = ∑  

𝑑∣𝑛

(𝜇(𝑑) ∑  

𝑐∣(𝑛/𝑑)

𝑓(𝑐)) 

The crucial step in the proof  is to observe that the set of S of pairs of integers (c,d) 

with d|n and c|n/d is the same as the set T of pairs (c,d) with c/n and d|n/c. 

∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) = ∑  

𝑑∣𝑛

(𝜇(𝑑) ∑  

𝑐∣(𝑛/𝑑)

𝑓(𝑐)) 

      

                           = ∑  

𝑑∣𝑛

( ∑  

𝑐∣(𝑛/𝑑)

𝜇(𝑑)𝑓(𝑐)) 
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             = ∑  

(𝑐,𝑑)∈𝑆

𝑓(𝑐)𝜇(𝑑) 

           = ∑  
(𝑐,𝑑)∈𝑇

𝑓(𝑐)𝜇(𝑑) 

                         = ∑  

𝑐∣𝑛

(𝑓(𝑐) ∑  

𝑑∣(𝑛/𝑐)

𝜇(𝑑)) 

       = F(n) 

𝐴𝑠 ∑  

𝑑∣𝑛

𝜇(𝑑) = 0    𝑢𝑛𝑙𝑒𝑠𝑠 𝑛
𝑐⁄ = 1, which happens when c = n  

Let us demonstrate this with n = 15  

∑  

𝑑∣15

𝜇(𝑑)𝐹 (
15

𝑑
) = 𝜇(1)[ 𝑓 (1) +  𝑓 (3) +  𝑓 (5) +  𝑓 (15)] + 𝜇(3)[ 𝑓 (1) +  𝑓 (5)] 

                                +𝜇(5)[ 𝑓 (1) +  𝑓 (3)] + 𝜇(15)[ 𝑓 (1)] 

                             = f (1)[μ(1) + μ(3) + μ(5) + μ(15)] + f (3)[μ(1) + μ(5)] + f (5)[μ(1) + 

                               μ (5)] + f(15) μ(1) 

                            = f(1).0 + f(3).0 + f(5).0 + f(15) 

                            = f(15) 

The above theorem leads to the following interesting identities  

1. we know that for any positive integer n,  

∑  

𝑑∣𝑛

𝜙(𝑑) = 𝑛 

Where 𝜙(𝑛) is Euler’s 𝜙 function. Hence  

𝜙(𝑛) =  ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝑑 

For example, 

𝜙(10) =  μ(1)10 +  μ(2)5 +  μ(5)2 + μ(10)1   
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                                               = 10 - 5 – 2 + 1 

                                               = 4 

2. similarly  

 

𝜎(𝑛) = ∑  

𝑑∣𝑛

𝑑 

                      𝑛   = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝜎(𝑑) 

For example, 

With n = 10  

μ(10). 1 + μ(2)(1 + 5) + μ(5)(1 + 3) + μ(1)(1 + 3 + 5 + 10) 

                = 1 – 1 – 5 – 1 – 3 + 1 + 3 +5 + 10 

     = 10 

We have seen before that if multiplicative so is 𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑). But we can now 

Prove that converse applying the Mobius inversion formula 

Theorem 2.10 

If F is a multiplicative function and 

𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑) 

then f is also multiplicative. 

Proof: 

By the Mobius inversion formula we know that  

𝑓(𝑛) = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝐹(𝑑) 

Let m and n be relatively prime positive integers. We recall that any divisor 

d of mn can be uniquely written as d = d1, d2, where d1 |m, d2 | n, and  

gcd(d1, d2) = 1 = gcd(
𝑚

𝑑1
,

𝑛

𝑑2
). 
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Conversely if d1/m and d2/n then d1d2/mn    thus, 

𝑓(𝑚𝑛) = ∑  

𝑑∣𝑚𝑛

𝜇(𝑑)𝐹 (
𝑚𝑛

𝑑
)

= ∑  
𝑑1|𝑚
𝑑2|𝑛

𝜇(𝑑1𝑑2)𝐹 (
𝑚𝑛

𝑑1𝑑2

)

= ∑  
𝑑1|𝑚
𝑑2|𝑛

𝜇(𝑑1)𝜇(𝑑2)𝐹 (
𝑚

𝑑1

) 𝐹 (
𝑛

𝑑2

)

= ∑  

𝑑1∣𝑚

𝜇(𝑑1)𝐹 (
𝑚

𝑑1

) ∑  

𝑑2∣𝑛

𝜇(𝑑2)𝐹 (
𝑛

𝑑2

)

= 𝑓(𝑚)𝑓(𝑛)

 

In view of the above theorem we can say that as N(n) = n is a multiplicative function 

so is 𝜙(𝑛) because  

∑  

𝑑∣𝑛

𝜙(𝑑) = 𝑛 =  N(n)  
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CONCLUSION 

 

The purpose of this project gives a simple account of Arithmetic function, Euler’s phi 

function and Mobius Function. The study of these topics given excellent introduction 

to the subject called ‘NUMBER THEORETIC FUNCTION’ 

Number Theoretic Function demands a high standard of rigor. Thus, our presentation 

necessarily has its formal aspect with care taken to present clear and detailed 

argument. An understanding of the statement of the theorem, number theory proof is 

the important issue. In the first chapter we discuss about function τ and σ are both 

multiplicative function. If f is a multiplicative function and F is defined by  

𝐹(𝑛) = ∑  𝑑∣𝑛 𝑓(𝑑), then F is also multiplicative. In the second chapter 2 we discuss 

about that if p is prime the 𝜙(𝑝) = 𝑝 − 1, 𝜙(𝑚𝑛) = 𝜙(𝑚)𝜙(𝑛). The Mobius 

function is multiplicative function if f is multiplicative function and  𝐹(𝑛)=∑  𝑑∣𝑛 𝑓(𝑑), 

then F is also multiplicative. 
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INTODUCTION 

In linear algebra, an inner product space is a vector space with an additional structure 

called an inner product. This additional structure associates 

each pair of vectors in the space with a scalar quantity known as the inner product of the 

vectors. Inner products allow the rigorous introduction of intuitive geometrical notions 

such as the length of a vector or the angle between two vectors. They also provide the 

means of defining orthogonality between vectors (zero inner product). Inner product 

spaces generalize Euclidean spaces (in which the inner product is the dot product, also 

known as the scalar product) to vector spaces of any (possibly infinite) dimension and are 

studied in functional analysis. The first usage of the concept of a vector space with an 

inner product is due to Peano, in 1898. 

An inner product naturally induces an associated norm, thus an inner product space is also 

a normed vector space. A complete space with an inner product is called a Hilbert space. 

An (incomplete) space with an inner product is called a pre-Hilbert space. 
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PRELIMINARIES 

         LINEAR SPACES 

Definition 1:  A linear (vector) space X  over a field F is a set of elements 

together with a function, called addition, from X × X into X and a function 

called scalar multiplication, from F × X into X which satisfy the following 

conditions for all x, y, z ∈ X and α, β ∈ F; 

i. (x + y) + z = x + (y + z) 

ii. x + y = y + x 

iii. There is an element 0 in X such that x + 0 = x for all x ∈ X. 

iv. For each x ∈ X there is an element −x ∈ X such that x + (−x) = 0. 

v. (x + y) = αx + αy 

vi. (α + β)x = αx + βx 

vii. α(βx) = (αβ)x 

viii. 1 · x = x. 

Properties i to iv imply that X is an abelian group under addition and v to vi 

relate the operation of scalar multiplication to addition X and to addition and 

multiplication in F. 

Examples: 

         (a)  Vn(R). The vectors are n-tuples of real numbers and the scalars are real       
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                numbers with addition and scalar multiplication defined by 

 

                  
1 1 1 1,···, ,···,( ) ( ( )) ,···,n n n n       + = + +                                      (1)             

                                    
1 1( ) (, )···, ,···,n n    =                     (2) 

         Vn(R) is a linear space over R. Similarly, the set of all n-tuples of complex          

            numbers with the above definition of addition and multiplication is a linear    

         space over C and is denoted as Vn(C). 

         (b) The set of all functions from a nonempty set X into a field F with addition and         

                 scalar multiplication defined by 

[f + g](t) = f (t) + g(t) and [αf ](t) = αf (t); f, g ∈ X, t ∈ T     (3)      

is a linear space. 

Let T = N the set of all positive integers and X is the set of all sequences of 

elements F with addition and scalar multiplication defined by 

 

                              ( ) ( )n n n n   + = +                                       (4) 

                                 ( ) ( )n n  =                                                                         (5) 

denoted as V∞(F), form a linear space. 
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METRIC SPACES 

Remember    the        distance        function   in        the  Euclidean  space  Rn. 

                         Let         x, y, z ∈ Rn, then 

(1) |x − y| ≥ 0; |x − y| = 0 if and only if x = y ;  

(2) |x − y| = |y − x|; 

(3) |x − y| ≤ |x − z| + z − y|. 

Definition 2: A metric or distance function on a set X is a real valued function 

d defined on X × X which has the following properties: for all x, y, z ∈ X. 

(1) d(x, y) ≥ 0; d(x, y) = 0 if and only if x = y;  

(2) d(x, y) = d(y, x); 

(3)  d(x, y) ≤ d(x, z) + d(z, y) 

A metric space (X, d) is a nonempty set X and a metric d defined on X. 

Examples: In addition to the Euclidean spaces let us have the following examples. 

Here all functions are assumed to be continuous. Let pL  denotes a set of complex 

valued functions in Rn such that 
p

f   is integrable.  Let us recall some results 

concerning such functions. 

Höder’s Inequality: If p > 1, 1/q = 1 − 1/p 

                                            
1/ 1/| | [ | | ] [ | | ]p p q qfg f g   . 

Minkowski’s Inequality: If p ≥ 1, 

                                       1/ 1/ 1/p[ | | ] [ | | ] [ | | ]p p p p pf g f g+  +    
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If xk and yk for k = 1, … , m are complex numbers, let f (t) = |xk| and g(t) = 

|yk| for t ∈ [k, k + 1] and f (t) = 0 = g(t) for t∈ [1, m + 1]. Then we obtain the 

summation form of the above inequalities from the integral form 

Hölder’s Inequality 

                         

1/ 1/

1 1 1

p q
p qm m m

k k k k

k k k

x y x y
= = =

   
    

      
    

Minkowski’s Inequality: 

                      

1/ 1/ 1/p

1 1 1

p p
p p pm m m

k k k k

k k k

x y x y
= = =

     
+  +     

          
  

         NORMED LINEAR SPACES 

Definition 3. A norm on X is a real valued function, whose value at x is denoted 

by ||x||, satisfying the following conditions for all x, y ∈ X and α ∈ F; 

(1) ||x|| > 0 if x ≠ 0  

(2) ||αx|| = |α|||x|| 

(3) ||x + y|| ≤ ||x|| + ||y||. 

A linear space X with a norm defined on it is called a normed linear space.  

Example: 
pl space. On the linear space Vn(F), define 

                                        
1/

1

[ | | ]
n

p p

i

k

x 
=

=   

         where p ≥ 1 is any real number and x =
1,··( )·, n  . This defines a norm (called p-                         

         norm) on Vn(F). This space is called 
pl space .  



 

 

6  

 

CHAPTER 1 

INNER PRODUCT SPACES 

INNER PRODUCTS 

Let 𝐹 be the field of real numbers or the field of complex numbers, and V a vector space over 

F an inner product on V is a function which assigns to each ordered’ pair of vectors 𝛼, 𝛽 in V 

a scalar (𝛼|𝛽) in 𝐹 in such a way that for all 𝛼, 𝛽, γ  in V and all scalars c. 

(a) (𝛼 + 𝛽|𝛾) = (𝛼|𝛾) + (𝛽|𝛾) ; 

(b) (c𝛼|𝛽) = 𝑐(𝛼|𝛽) ; 

(c) (𝛽|𝛼) = (𝛼|𝛽̅̅ ̅̅ ̅), the bar denoting complex conjugation 

(d) (𝛼|𝛼) > 0 if 𝛼 ≠ 0 

It should be observed that conditions (a), (b) and (c) implies that 

(𝑒) = (𝛼 ∣ 𝑐𝛽 + 𝛾) = (𝑐̅(𝛼|𝛽) + (𝛼|𝛾) 

One other point should be made. When 𝐹 is the field 𝑅 of real nunbers. The complex conjugates 

appearing in (c) and (e) are superflom. However, in the complex case they are necessary for 

the consistency of the conditions. Without these complex conjugates we would have the 

contradiction 

(𝛼|𝛼) > 0  and  (𝑖𝛼 ∣ 𝑖𝛼) = −1(𝛼|𝛼) 

Example 1: 

On F𝑛 there is an inner product which we call the standard inner product. It is defined on 𝛼 =

(𝑥1, ⋯ 𝑥𝑛) and 𝛽 = (𝑦1, … , 𝑦𝑛), by 
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(𝛼|𝛽) = ∑  

𝑖

𝑥𝑖𝑦𝑖̅ 

When F is R this may be also written as 

(𝛼|𝛽) = ∑  

𝑖

𝑥𝑖𝑦𝑖 

In the real case, the standard inner product is often called the dot or scalar product and denoted 

by 𝛼 ⋅ 𝛽. 

INNER PRODUCTS SPACES 

An inner product space is a real or complex vector space together with a specified inner product 

on that space. 

• A finite-dimensional real inner product space is often called a Euclidean spare. A 

complex inner product spare often referred to as a unitary spare. 

• Every inner product space is a normed linear space and every normed space is a metric 

space. Hence , every inner product space is a metric space. 

Theorem 

If V is an inner product space, then for any vector’s 𝛼, 𝛽 in 𝑉 and any scalar c 

(1) ||𝑐𝛼|| = |𝑐|||𝛼|| ; 

(ii) ||𝛼|| > 0 for 𝛼 ≠ 0 

(iii) |(𝛼 ∣ 𝛽)| ⩽ ||𝛼|| ||𝛽||  

(iv) ∥ 𝛼 + 𝛽|| ⩽∥ 𝛼 ∥ +∥ 𝛽|| 

Proof: 

Statements (i) and (ii) follow almost immediately form the various definitions 

involved. The inequality in (iii) is clearly valid when 𝛼 = 0.  if 𝛼 ≠ 0, put 

𝛾 = 𝛽 −
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 
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      Then,                                     (𝛾 ∣ 𝛼) = 0 and 

                                           0 ⩽∥ 𝛾 ∥2= (𝛽 −
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 𝛽 −

(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼⁄ ) 

                                                             = (𝛽|𝛽) −
(𝛽|𝛼)(𝛼|𝛽)

∥ 𝛼 ∥2
 

            =∥ 𝛽 ∥2−
|(𝛼|𝛽)|2

∥ 𝛼 ∥2
 

Hence, 

|(𝛼 ∣ 𝛽)|2 ⩽∥ 𝛼 ∥2∥ 𝛽 ∥2 

Now using (c) we find that 

                           ∥ 𝛼 + 𝛽 ∥2 = ∥ 𝛼 ∥2+ (𝛼 ∣ 𝛽) + (𝛽 ∣ 𝛼)+∥ 𝛽 ∥2 

                                  

=∥ 𝛼 ∥2+ 2Re (𝛼 ∣ 𝛽)+∥ 𝛽 ∥2

⩽∥ 𝛼 ∥2+ 2 ∥ 𝛼 ∥∥ 𝛽 ∥ +∥ 𝛽 ∥2

= (∥ 𝛼 ∥ +∥ 𝛽 ∥)2

 

Thus,  

                                          ∥ 𝛼 + 𝛽 ∥ ⩽ ∥ 𝛼 ∥ +∥ 𝛽 ∥ 

the inequality (iii) is called the Cauchy -Schwarz inequality. It has a wide variety of application 

the proof shows that if 𝛼is non-zero then 

     (( 𝛼 ∣∣ 𝛽 )) <∥ 𝛼 ∥∥ 𝛽 ∥, unless 

𝛽 =
(𝛽|𝛼)

∥ 𝛼 ∥2
𝛼 

Then equality occurs in (iii) if and only if 𝛼 and 𝛽 are linearly independent. 
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CHAPTER 2 

ORTHOGONAL SETS 

 Definition 

             Let α and β be the vectors in an inner product space V. Then α is orthogonal to β   if   

(α | β) = 0. We simply say that and are orthogonal. 

Definition 

 If  S is a set of vectors in V, S is called an orthogonal set provided all set pairs of 

distinct vectors in S are orthogonal. 

Definition 

 An orthogonal set is an orthogonal set S with the additional property that  ∥ 𝛼 ∥= 1 for 

every 𝛼 in S.  

• The zero vectors are orthogonal to every vector in V and is the only vector with this 

property. 

• It is an appropriate to think of an orthonormal set as a set of mutually perpendicular 

vectors each having length l.  

Example: the vector (x , y) is 𝑅2 is orthogonal to (−y , x) with respect to the standard inner 

product, for, 

 ((x , y)|(−y , x)) = −xy +  yx = 0 

• The standard basis of either 𝑅𝑛 or 𝐶𝑛 is an orthonormal set with respect to the standard 

inner product. 
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Theorem : An orthogonal set of nonzero vectors is linearly independent. 

Proof: 

Let S be a finite or infinite orthogonal set of nonzero vectors in a given inner product space 

suppose  𝛼1,𝛼2, … 𝛼𝑛 are distinct vectors in S and that β=𝑐1𝛼1+ + ⋯ 𝑐𝑛𝛼𝑛       

Then  (β|𝛼𝑘)=( 𝑐1𝛼1+ + ⋯ 𝑐𝑛𝛼𝑛|𝛼𝑘)   

                     = 𝑐1(𝛼1|𝛼𝑘) + 𝑐2( 𝛼2|𝛼𝑘)+…+𝑐𝑛(𝛼𝑛|𝛼𝑘)  

                     = 𝑐𝑘(𝛼𝑛|𝛼𝑘) , since (𝛼𝑖 |𝛼𝑗) = 0,if i ≠ j and (𝛼𝑖 |𝛼𝑗) = 1,if i=j 

Hence,  𝑐𝑘= (β |𝛼𝑘) /(𝛼𝑘 , 𝛼𝑘) ) 

             𝑐𝑘=(β |𝛼𝑘)/||𝛼𝑘||2,1≤ k ≤ m 

Thus, when β=0 each 𝑐𝑘=0; so S is a linearly independent set. 

Corollary:  

If {𝛼1,𝛼2, … 𝛼𝑚} is an orthogonal set of nonzero vectors in a finite dimensional inner product 

space V, then m ≤ dimV. 

That is number of mutually orthogonal vectors in V cannot exceed the dimensional V. 

Corollary: 

 If a vector β is linear combination of an orthogonal of nonzero vectors 𝛼1,𝛼2, … 𝛼𝑛, then β is 

the particular linear combination  

 β =∑
(𝛽 |𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘                                                     

Proof : 

        Since β is the linear combination of an orthogonal sequence of nonzero vectors 

𝛼1,𝛼2, … 𝛼𝑛 , we can write     β =𝑐1𝛼1 + ⋯ 𝑐𝑛𝛼𝑛. 

Where      𝑐𝑘 =
(𝛽|𝛼𝑘)

||𝛼𝑘||2
  , 1 ≤ k ≤ m (ref. by previous theorem) 

          Hence, β= ∑
(𝛽|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1  
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Theorem (Gram Schmidt Orthogonalization Process) 

Let V be an inner product space and {𝛽1, … , 𝛽𝑛} be any linearly independent vectors in V. Then 

one may construct orthogonal vectors {𝛼1,𝛼2, … 𝛼𝑛} in V, such that for each k = 1, 2, …n, the 

set {𝛼1,𝛼2, … 𝛼𝑘}is an orthogonal basis for the subspace of V spanned by 𝛽1, … , 𝛽𝑛. 

Proof : 

     The vectors are obtained by means of a construction known as the Gram Schmidt 

orthogonalization process. 

First let 𝛼1 =𝛽1 The other vectors are then given inductively as follows: 

   Suppose 𝛼1,𝛼2, … 𝛼𝑚  (1 ≤ m ≤ n) have been chosen so that for every k  

 {𝛼1,𝛼2, … 𝛼𝑘} (1≤k≤m) 

 is an orthogonal basis for the space of v that is spanned by 𝛽1, … , 𝛽𝑛 

 To construct the next vector 𝛼𝑚+1,  let  

  𝛼𝑚+1,= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 

Then 1 0m +  . For otherwise,  𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘=0, implies, 

 𝛽𝑚+1= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 ,implies, 1m + is a linear combination of 𝛼1,𝛼2, … 𝛼𝑚 and 

hence a linear combination of 1 2, ,..., m   , a contradiction. 

Furthermore, if 1≤j≤m, then, 

                (𝛼𝑚+1| 𝛼𝑗) = ( 𝛽𝑚+1| 𝛼𝑗) -∑
(𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 (𝛼𝑘 |𝛼𝑗)  

   = ( 𝛽𝑚+1| 𝛼𝑚) – ( 𝛽𝑚+1| 𝛼𝑗) , using the orthonormality of {𝛼1,𝛼2, … 𝛼𝑚}. 

Therefore {𝛼1,𝛼2, …,𝛼𝑚+1} is an orthogonal set consisting of m+1 nonzero vectors in the 

subspace spanned by  𝛽1, … , 𝛽𝑚+1. Hence by an earlier Theorem , it is a basis for this subspace 

.Thus the vectors , 𝛼1,𝛼2, … 𝛼𝑛 may be constructed using the formula 
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  𝛼𝑚+1= 𝛽𝑚+1-∑
( 𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘 

In particular, when n=3 ,we have  

 𝛼1=𝛽1 

 𝛼2=𝛽2- 
(𝛼2|𝛽2)

||𝛼𝑘||2 α1 

 𝛼3=𝛽3 - 
(𝛽3|𝛼1)

||𝛼1||2 α1 - 
(𝛼2|𝛽3)

||𝛼𝑘||2 𝛼2 

Corollary : 

 Every finite dimensional inner product space has an orthonormal basis. 

Proof : 

 Let V be a finite dimensional inner product space and { 𝛽1, … , 𝛽𝑛} a basis for V. Apply the 

gram Schmidt orthogonalization process  to construct an orthogonal basis , simply replace each  

vector 𝛼𝑛 by  
𝛼𝑘

||𝛼𝑘||
. 

Gram-Schmidt process can be used to test for linear dependence . For suppose  𝛽1, … , 𝛽𝑛 are 

linearly independent vectors in an inner product space; to exclude a trivial case , assume that 

β≠0. Let m be largest integers for which  𝛽1, … , 𝛽𝑚are independent. Then 1≤m˂n. 

 Let 𝛼1, 𝛼2, … 𝛼𝑚 be the vectors obtained by applying the orthogonalization process to 

 𝛽1, … , 𝛽𝑚. Then the vector 𝛼𝑚+1 given by 𝛼𝑚+1= 𝛽𝑚+1–∑
(𝛽𝑚+1|𝛼𝑘)

||𝛼𝑘||2 𝛼𝑘
𝑚
𝑘=1  is necessarily 0. 

For  𝛼𝑚+1 is in the subspace spanned by 𝛼1, 𝛼2, … 𝛼𝑚 and orthogonal to each of the vectors , 

hence it is 0 as β=∑
(β|𝛼𝑘)

||𝛼𝑘||2
𝑚
𝑘=1 𝛼𝑘. Conversely, if 𝛼1, 𝛼2, … 𝛼𝑚 are different from 0 and 𝛼𝑚+1 =0, 

then 𝛽1, … , 𝛽𝑚+1 are linearly independent . 

Definition: 

A best approximation to β  V by vectors in a subspace W  of V is a vector α W  such that 

                                  −  −  for every vector W   . 
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Theorem  

Let W be a subspace of an inner product space V and let  V  . 

    1. The vector  W  is a best approximation to  V  by vectors in W if and 

        only if   − is orthogonal to every vector in W . 

    2. If a best approximation to  V by vectors in W exists, it is unique. 

3. If W is finite-dimensional and {𝛼1,𝛼2, … 𝛼𝑛}  is any orthonormal basis for W ,  

    then the vector   

                                   
( )

2
1

|n
k

k

k k

 
 

=

=    

        is the (unique) best approximation to  by vectors in W. 

Definition: 

Let V be an inner product space and S be any set of vectors in V. The orthogonal complement 

of S is the set S ⊥
 of all vectors in V which are orthogonal to every vector in S. 

That is,  : ( | ) 0,S V S   ⊥ =  =    

Definition: 

      Whenever the vector α in the above theorem exists it is called the orthogonal projection of 

β on W. If every vector in V has an orthogonal projection on W, the mapping that assigns to 

each vector in V its orthogonal projection on W is called the orthogonal projection of V on W. 

Corollary : 

      Let V be an inner product space and W a finite dimensional subspace and E be the 

orthogonal projection of V on W. Then the mapping  

 β →β – Eβ 

is the orthogonal projection of V on W
⊥

. 
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Proof  :  

Let β  V . Then β – Eβ   W ⊥
 , and for any γ  W

⊥
, β – γ = E β+(β – Eβ – γ) 

Since Eβ  W and β – Eβ – γ   W ⊥
 , 

It follows that  

           ||𝛽 –  𝛾||2 = (Eβ+(β – Eβ – γ) ,E β+(β –Eβ – γ)) 

                              = ||𝐸𝛽||2+||𝛽 –  𝐸𝛽 –  𝛾||2 

    ≥ ||𝛽 – (𝛽 –  𝐸𝛽)||2 

 with strict inequality when γ≠ β – Eβ . Therefore, β – Eβ is the best approximation to β by 

vectors in W
⊥

 . 

Theorem  

Let W be a finite dimensional subspace of  an inner product space V and let E be the orthogonal 

projection of V on W. Then E is an idempotent linear transformation of V onto W , W⊥  is the 

null space of E , and  V= W ⨁ W⊥ . 

Proof  

         Let β be an arbitrary vector in V. Then Eβ is the best approximation to β that lies in W . 

In particular, Eβ =β when β is in W . Therefore, E(Eβ) =Eβ for every β in V; that is, E is 

idempotent : 𝐸2= E  . To prove that E is linear transformation, let α and β be any vectors in V 

and c an arbitrary scalar  ,Then by theorem,  

α-Eα and β-Eβ are  each orthogonal to every vector in W . Hence the vector 

c(α-Eα)+(β-Eβ)=(cα +β)-(cEα +Eβ) 

Also belongs to W
⊥

 . Since cEα+ Eβ is a vector in W , it follows from theorem that  

E(cα+ β)= cEα+ Eβ. 

Again let β be any vector in V. Then Eβ is the unique vector in W such that β-Eβ is in W
⊥

.  

Thus Eβ=0 when β is in W
⊥

.  

Conversely, β is in W
⊥

 when Eβ=0. Thus W
⊥

is the null space of E.  
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The equation , 

                              β = E β+β – Eβ  

shows that V = W W ⊥+ ; moreover {0}W W ⊥ = ; for if α is a vector in W W ⊥ ,then 

( )|  =0.  Therefore, α=0 and V is the direct sum of W and W
⊥

. 

Corollary  : 

Under the conditions of theorem, I E−  is the orthogonal projection of V on W
⊥

. 

It is an independent linear transformation of V onto W
⊥

with null space W . 

Proof : 

We have seen that the mapping β →β- E β   is the orthogonal projection of  V on W ⊥
. 

Since E is a linear transformation , this projection W ⊥
is the linear transformation  I E− from 

its geometric properties one sees that I E− is an idempotent .Transformation of V onto W .  

This also follows from the computation ( I E− )( I E− )= I E− - E +𝐸2 

  = I E−  

Moreover , ( I E− )β =0 If and only if   β = Eβ , and this is the case if and only if β is in W  . 

Therefore W is the null space of I E− . 
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INTRODUCTION 
 

 

A proper coloring of a graph is an assignment of colors to the vertices of the graph so that  

no two adjacent vertices have the same color. 

 

                     Usually we drop the word “proper” unless other types of coloring are also under  

discussion. Of course, the “colors” don’t have to be actual colors ; may can be any distinct  

labels - integers ,for examples , if a graph is not connected ,  each connected component can  

be colored independently; except where otherwise noted , we assume graphs are  

connected. We also assume graphs are simple in this section. Graph coloring has many  

applications in addition to its intrinsic interest. 

 

                        In the same way the most important concept of graph coloring is utilized in  

resource allocation, scheduling. Also, paths, walks and circuits in graph theory are used in  

tremendous applications say travelling salesman problem, database design concepts,  

resource networking. 

 

                       This project deals with coloring which is one of the most important topics in  

graph theory. In this project there are three chapters. First chapter is coloring . The second  

chapter is chromatic number. The last chapter deals with application of graph coloring. 
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BASIC CONCEPTS 

 

1. GRAPH 

      A graph is an ordered triplet. G=(V(G), E(G), I(G)); V(G) is a non empty set, E(G) is a set 

disjoint from V(G) and I(G) is an incidence map that associates each element of E(G) and  

unrecorded pair of element of V(G). The elements of V(G) are called vertices (or nodes or  

points) of G and the elements of E(G) are Called edges or lines of G. 

 

2. MULTIPLE EDGE / PARALLEL EDGE  

       A set of 2 or more edges of a graph G is called a multiple edge or parallel edge if they  

have the same  end vertices. 

 

3. LOOP 

       An edge for which the 2 end vertices are same is called a loop. 

 

4. SIMPLE GRAPH 

      A graph is simple if it has no loop and no multiple edges. 

 

5. DEGREE 

        Let G be a graph and v € V the number of edge incident at V in G is called the degree or  

vacancy of the vertex v in G. 
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CHAPTER - 1 
 

 

COLORING 
 

              

    Graph coloring is nothing but a simple way of labeling graph components such as  

vertices , edges and regions under some constraints. In a graph, no two adjacent vertices, 

adjacent edges , or adjacent regions are colored with minimum number of colors .This  

number is called the chromatic number and the graph is called properly colored graph. 

                                                  In graph theory coloring is a special case of graph labeling; it is  

an assignment of labels traditionally called “colors” to elements of a graph subject to certain  

constraints. In it simplest form, it is a way of coloring the vertices of a graph such that no  

two adjacent vertices share the same color, it is called vertex coloring. Similarly, edge 

coloring assigns a color to each edge so that no two adjacent edges share the common  

color. 

                                            While graph coloring , the constraints that are set on the graph are  

colors , order of coloring , the way of assigning color , etc.  A coloring is given to a vertex or a  

particular region . Thus, the vertices or regions having same colors form independent sets. 
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VERTEX COLORING 

                     Vertex coloring is an assignment of colors to the vertices of a graph  ‘G ’  such  

that no two adjacent vertices have the same color .Simply put , no two vertices of an edge  

should be of the same color. 

                                          The most common type of vertex coloring seeks to minimize the  

number of colors for a given graph . Such a coloring is known as a minimum vertex coloring , 

and the minimum number of colors which with the vertices of a graph may be colored is  

called the chromatic number .  

 

CHROMATIC NUMBER: 

                             The minimum number of colors required for vertex coloring  of  graph ‘ G ’   

is called as the chromatic number of G , denoted by   X (G) . 

X(G) = 1  iff  ‘ G ’   is a null graph. If  ‘G ’  is not a null graph , then X(G) ≥ 2. 

 

EXAMPLES; 

 

1.                                                                                            2.      

 

 

 

 

  

       Null Graph ( X (G)  = 1 )                                                          Not Null Graph  ( X (G) = 2 ) 
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EDGE COLORING    

                    An edge coloring of a graph G is a coloring of the edges of G such that adjacent  

edges ( or the edges bounding different regions ) receive different colors. An edge coloring 

containing the smallest possible number of colors for a given graph is known as a minimum  

edge coloring. 

                          The edge chromatic number gives the minimum number of colours with which 

graph’s edges can be colored. 

 

 

 

CHROMATIC INDEX 

                     The minimum number of colors required for proper edge coloring of graph is  

called chromatic index. 

A complete graph is the one in which each vertex is directly connected with all  

other vertices with an edge. If the number of vertices of a complete graph is n, then the 

chromatic  

index for an odd number of vertices will be n and the chromatic index for even number of  

vertices will be n-1. 

 

 



6 
 

EXAMPLES; 

1.    

 

 

 

 

 

 

          The given graph will require 3 unique colors so that no two incident edges have the  

Same color. So its chromatic index will be 3. 

 

2.   

 

 

 

 

            The given graph will require 2 unique colors so that no two incident edges have  

the same color. So its chromatic index will be 2. 
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CHAPTER 2 

Chromatic Number 

 

The chromatic number of a graph is the smallest number of colors needed to color the vertices  

of so that no two adjacent vertices share the same color. That is the smallest value of possible 

to obtain a k-coloring. 

 Graph Coloring is a process of assigning colors to the vertices of a graph. 

 It ensures that no two adjacent vertices of the graph are colored with the same color. 

 Chromatic Number is the minimum number of colors required to properly color any graph. 

 

 

Graph Coloring Algorithm 

  

 There exists no efficient algorithm for coloring a graph with minimum number of colors. 

  

However, a following greedy algorithm is known for finding the chromatic number of any given 

graph. 

 

 

Greedy Algorithm 

  

Step-01: 

  

Color first vertex with the first color. 
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 Step-02: 

 Now, consider the remaining (V-1) vertices one by one and do the following- 

 

 Color the currently picked vertex with the lowest numbered color if it has not been used to 
color any of its adjacent vertices. 

 If it has been used, then choose the next least numbered color. 

 If all the previously used colors have been used, then assign a new color to the currently 
picked vertex. 

  

 

Problems Based On Finding Chromatic Number of a Graph 

  

Problem-01: 

  

Find chromatic number of the following graph- 
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Solution- 

  

Applying Greedy Algorithm, we have 

Vertex a b C d e f 

Color C1 C2 C1 C2 C1 C2 

  

From here, 

 Minimum numbers of colors used to color the given graph are 2. 

 Therefore, Chromatic Number of the given graph = 2. 

  

The given graph may be properly colored using 2 colors as shown below- 
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Problem-02: 

  

Find chromatic number of the following graph- 

  

 

 Solution- 

  

Applying Greedy Algorithm, we have- 

  

Vertex a b C d e f 

Color C1 C2 C2 C3 C3 C1 

  

From here, 

 Minimum numbers of colors used to color the given graph are 3. 

 Therefore, Chromatic Number of the given graph = 3. 
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The given graph may be properly colored using 3 colors as shown below- 

  

 

 

Chromatic Number of Graphs 

  

Chromatic Number of some common types of graphs are as follows- 

  

1. Cycle Graph- 
  

 A simple graph of ‘n’ vertices (n>=3) and ‘n’ edges forming a cycle of length ‘n’ is called as a 
cycle graph. 

 In a cycle graph, all the vertices are of degree 2. 

  

Chromatic Number 

 If number of vertices in cycle graph is even, then its chromatic number = 2. 

 If number of vertices in cycle graph is odd, then its chromatic number = 3. 
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Examples- 
 

 

2. Planar Graphs- 
 
A planar graph is a graph that can be embedded in the plane, that is it can be drawn on the 
plane in such a way that its edges intersect only at their endpoint. In other words, it can be 
drawn in such a way that no edges cross each other. 
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A Planar Graph is a graph that can be drawn in a plane such that none of its edges cross each 
other. 

 

Chromatic Number 

Chromatic Number of any Planar Graph is less than or equal to 4 

  

Examples- 

+  

 All the above cycle graphs are also planar graphs. 

 Chromatic number of each graph is less than or equal to 4. 

 

 

https://www.gatevidyalay.com/planar-graphs/
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3. Complete Graphs- 

  

 A complete graph is a graph in which every two distinct vertices are joined by exactly one 
edge. 

 In a complete graph, each vertex is connected with every other vertex. 

 So to properly it, as many different colors are needed as there are number of vertices in the 
given graph. 

  

Chromatic Number 

Chromatic Number of any Complete Graph 

= Number of vertices in that Complete Graph 

  

Examples- 
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4. Bipartite Graphs- 
 
 
A bipartite graph is a graph whose vertices can be divided into two disjoint and independent 
sets U and V such that every edge connects a vertex in U to one in V. Vertex sets U and V are 
usually called the parts of the graph. 

  

 A Bipartite Graph consists of two sets of vertices X and Y. 

 The edges only join vertices in X to vertices in Y, not vertices within a set. 

 

Chromatic Number 

Chromatic Number of any Bipartite Graph 

= 2 

  

Example- 

  

 

https://www.gatevidyalay.com/bipartite-graphs/
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5. Trees- 

  

A tree is an undirected graph in which any two vertices are connected by exactly one path, or 
equivalently a connected acyclic undirected graph. 

 

 A Tree is a special type of connected graph in which there are no circuits. 

 Every tree is a bipartite graph. 

 So, chromatic number of a tree with any number of vertices = 2. 

  

Chromatic Number 

Chromatic Number of any tree 

= 2 

  

Examples- 

  

 

 

https://www.gatevidyalay.com/tree-data-structure-tree-terminology/
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CHAPTER-3 

APPLICATIONS OF GRAPH COLORING 

 

1) Making Schedule or Time Table: 

                         Suppose we want to make an exam schedule for a university. We have list 

different subjects and students enrolled in every subject. Many subjects would have common 

students (of same batch, some backlog students, etc). How do we schedule the exam so that no 

two exams with a common student are scheduled at same time? How many minimum time 

slots are needed to schedule all exams? This problem can be represented as a graph where 

every vertex is a subject and an edge between two vertices mean there is a common student. 

So this is a graph coloring problem where minimum number of time slots is equal to the 

chromatic number of the graph.  

 

2) Mobile Radio Frequency Assignment:  

                       When frequencies are assigned to towers, frequencies assigned to all towers at the 

same location must be different. How to assign frequencies with this constraint?  What is the 

minimum number of frequencies needed?  This problem is also an instance of graph coloring 

problem where every tower represents a vertex and an edge between two towers represents 

that they are in range of each other.  

 

3) Register Allocation: 

                  In compiler optimization, register allocation is the process of assigning a large number 

of target program variables onto a small number of CPU registers. This problem is also a graph 

coloring problem. 

 

4) Sudoku: 

                    Sudoku is also a variation of Graph coloring problem where every cell represents a 

vertex. There is an edge between two vertices if they are in same row or same column or same 

block.  
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5)     Map Coloring: 

                     Geographical maps of countries or states where no two adjacent cities cannot be 

assigned same color. Four colors are sufficient to color any map. 

 

 

6)   Bipartite Graphs:  

                   We can check if a graph is bipartite or not by coloring the graph using two colors. If a 

given graph is 2-colorable, then it is Bipartite, otherwise not. See this for more details. 

 

Explanation; 

 

Algorithm: 

              A bipartite graph is possible if it is possible to assign a color to each vertex such that no 
two neighbour vertices are assigned the same color. Only two colors can be used in this 
process. 

 

 

 

Steps: 

1. Assign a color (say red) to the source vertex. 

2. Assign all the neighbours of the above vertex another color (say blue). 

3. Taking one neighbour at a time, assign all the neighbour's neighbours the color red. 

4. Continue in this manner till all the vertices have been assigned a color. 

5. If at any stage, we find a neighbour which has been assigned the same color as that of the 

current vertex, stop the process. The graph cannot be colored using two colors. Thus the graph 

is not bipartite. 
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Example: 
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CONCLUSION 

 

This project aims to provide a solid background in the basic topics of graph coloring. Graph 

coloring problem is to assign colors to certain elements of a graph subject to certain 

constraints. The nature of coloring problem depends on the number of colors but not on what 

they are. 

                    The study of this topic gives excellent introduction to the subject called “Graph 

Coloring”. 

This project includes two important topics such as vertex coloring and edge coloring and came 

to know about different ways and importance of coloring. 

                    Graph coloring enjoys many practical applications as well as theoretical challenges. 

Besides the applications, different limitations can also be set on the graph or on the away a color 

is assigned or even on the color itself. It has been reached popularity with the general public in 

the form of the popular number puzzle Sudoku and it is also use in the making of time 

management which is an important application of coloring. So graph coloring is still a very 

active field of research.  
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INTRODUCTION 

 

A  Number Theoretic Function is a complex valued function defined for all positive 

integers. In Number Theory, there exist many number theoretic functions. This 

includes Divisor Function, Sigma Function, Euler’s-Phi Function and Mobius 

Function. All these functions play a very important role in the field of Number 

Theory. 

In the first chapter we will discuss about Arithmetic Function. In the second chapter 

we will introduce Euler’s-Phi Function and Mobius Function. 
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PRELIMINARY  

Let n be a fixed positive integer. Two integers a and b are said to be congruent 

modulo n, symbolized by 

a ≡ b (mod n) 

if n divides the difference a − b; that is, provided that a − b = kn for some integer k. 

Example: 

To fix the idea, consider n = 7. It is routine to check that 

3 ≡ 24 (mod 7)        − 31 ≡ 11 (mod 7)          − 15 ≡ −64 (mod 7) 

Because  3 − 24 = (−3)7,   −31 − 11 = (−6)7   and  −15 − (−64) = 77. When 

n does not divide (a − b),  we say that a is incongruent to b modulo n, and in this case 

we write 

a ≢ b (mod n). For a simple example: 25 ≢ 12 (mod 7), because 7 fails to divide 

25 − 12 = 13. 

It is to be noted that any two integers are congruent modulo 1, whereas two integers 

are congruent modulo 2 when they are both even or both odd. In as much as 

congruence modulo 1 is not particularly interesting, the usual practice is to assume 

that  n > 1. 

Remark: 

Given an integer a, let q and r be its quotient and remainder upon division by n,        

so that 

a = qn + r    0 ≤ r < n 

Then, by definition of congruence, a ≡ r (mod n). Because there are n choices for 

r , we see that every integer is congruent modulo n to exactly one of the values 

0, 1, 2, . . . , n − 1;  in particular, a ≡ 0 (mod n) if and only if n | a. 
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Fundamental Theorem of Arithmetic 

is Every integer 𝑛 > 1 can be represented as Product of prime factor in only one way, 

apart from the order of the factors. 

 

Residue 

If a is an integer and 𝑚 is a positive integer then the residue class of a modulo 𝑚 is 

denoted by 𝑎̂ and is given by 

𝑎̂  = {𝑥: 𝑥 ≡ 𝑎(𝑚𝑜𝑑𝑚)}

 = {𝑥: 𝑥 = 𝑎 + 𝑚𝑘,  𝑘 = 0, ±1, ±2, ⋯ }
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CHAPTER 1 

ARITHMETIC FUNCTION 

An arithmetic Function is a function defined on the positive integers which take 

values in the real or complex numbers. i.e., A function   f: N→ C is called an 

arithmetic function. 

An arithmetic function is called multiplicative if f(mn) = f(m)f(n) for all coprime 

natural numbers m and n. 

Examples  

a) Sum of divisors 𝜎(n) 

b) Number of divisors 𝜏(n) 

c) Euler’s function 𝜙(n) 

d) Mobius function 𝜇(n) 

 

Definition 1.1 

Given a positive integer n, let τ (n) denote the number of positive divisors of n and 

σ(n) denote the sum of positive divisors of n. 

Example 

Consider n = 12. Since 12 has the positive divisors 1, 2, 3, 4, 6, 12, we find that 

τ (12) = 6   and   σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 

For the first few integers, 

τ (1) = 1         τ (2) = 2     τ (3) = 2      τ (4) = 3     τ (5) = 2      τ (6) = 4, . . . 

σ(1) = 1,         σ(2) = 3,    σ(3) = 4,      σ(4) = 7 ,    σ(5) = 6,      σ(6) = 12, . . . 

It is not difficult to see that   τ (n) = 2   if and only if n is a prime number; also,        

σ(n) = n + 1   if and only if n is a prime. 
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Theorem 1.1 

If    n = 𝑝1
𝑘1 … … … … . 𝑝𝑟

𝑘𝑟  is the prime factorization of n > 1, then 

(a) τ (n) = (k1+ 1)(k2 + 1) ・ ・ ・ (kr + 1), and   

(b) σ(n) =   
𝑝1

𝑘1+1
−1

𝑝1−1
… … … … … … … .

𝑝𝑟
𝑘𝑟+1

−1

𝑝𝑟−1
 

Proof 

The positive divisors of n are precisely those integers 

d = 𝑝1
𝑎1  𝑝2

𝑎2 … … . . 𝑝𝑟
𝑎𝑟 

where 0 ≤ ai ≤ ki . There are k1 + 1 choices for the exponent a1;  k2 + 1 choices for a2, . 

. . ; and kr + 1 choices for ar . Hence, there are 

(k1 + 1)(k2 + 1) · · · (kr + 1) 

possible divisors of n. 

To evaluate σ(n), consider the product 

(1 + 𝑝1 +  𝑃1
2 + ⋯ … … … 𝑃1

𝐾1) (1 + 𝑝2 +  𝑃2
2 + ⋯ … … … 𝑃2

𝐾2)……………….. 

………….(1 + 𝑝𝑟 +  𝑃𝑟
2 + ⋯ … … … 𝑃𝑟

𝐾𝑟) 

Each positive divisor of n appears once and only once as a term in the expansion of 

this product, so that 

σ(n) = (1 + 𝑝1 +  𝑃1
2 + ⋯ … … … 𝑃1

𝐾1) (1 + 𝑝2 +  𝑃2
2 + ⋯ … … … 𝑃2

𝐾2)……………….. 

            ………….(1 + 𝑝𝑟 +  𝑃𝑟
2 + ⋯ … … … 𝑃𝑟

𝐾𝑟) 

Applying the formula for the sum of a finite geometric series to the ith factor on the 

right-hand side, we get 

(1 + 𝑝𝑖 +  𝑃𝑖
2 + ⋯ … … … 𝑃𝑖

𝐾𝑖) =  
𝑝𝑖

𝑘𝑖+1
− 1

𝑝𝑖 − 1
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It follows that 

 σ(n) =   
𝑝1

𝑘1+1
−1

𝑝1−1
… … … … … … … .

𝑝𝑟
𝑘𝑟+1

−1

𝑝𝑟−1
 . 

 

Corresponding to the ∑ notation for sums, the notation for products may be 

defined using ∏ , the Greek capital letter pi. The restriction delimiting the numbers 

over which the product is to be made is usually put under the  ∏ 

sign. 

Examples 

 

With this convention, the conclusion to Theorem 1.1 takes the compact form: if 

n = 𝑝1
𝑘1  𝑝2

𝑘2 … … . . 𝑝𝑟
𝑘𝑟  is the prime factorization of n > 1, then 

                                                                                        

and                                               
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Theorem 1.2    

The functions τ and σ are both multiplicative functions 

Proof 

Let m and n be relatively prime integers. Because the result is trivially true if 

either m or n is equal to 1, we may assume that m > 1 and n > 1. If 

         

are the prime factorizations of m and n . It follows that the prime factorization of 

the product mn is given by 

                 

Applying to theorem 1.1, we obtain 

                 

In a similar fashion, theorem 1.1 gives 

             

Thus, τ and σ are multiplicative functions. 

Theorem 1.3 

If f is a multiplicative function and F is defined by 

                  

then F is also multiplicative. 
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Proof 

Let m and n be relatively prime positive integers. Then 

             

because every divisor d of mn can be uniquely written as a product of a divisor d1 

of m and a divisor d2 of n, where gcd(d1, d2) = 1. By the definition of a 

multiplicative function, 

              f (d1d2) = f (d1) f (d2) 

It follows that 

              

It might be helpful to take time out and run through the proof of Theorem 1.3 

in a concrete case. Letting m = 8 and n = 3, we have 

                             

= f (1) + f (2) + f (3) + f (4) + f (6) + f (8) + f (12) + f (24) 

= f (1 · 1) + f (2 · 1) + f (1 · 3) + f (4 · 1) + f (2 · 3)+ f (8 · 1) + f (4 · 3) + f (8 · 3) 

= f (1) f (1) + f (2) f (1) + f (1) f (3) + f (4) f (1) + f (2) f (3)+ f (8) f (1)                                             

.   + f (4)f(3)+ f (8) f (3)          
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= [ f (1) + f (2) + f (4) + f (8)][ f (1) + f (3)] 

 

= F(8)F(3) 

Theorem 1.3 provides a deceptively short way of drawing the conclusion that τ 

and σ are multiplicative 

 

The Mangoldt function 𝚲(𝒏) 

Definition 1.2 

For every integer 𝑛 ≥ 1 we define 

Λ(𝑛) = {
log 𝑝  if 𝑛 = 𝑝𝑚 for some prime 𝑝 and some 𝑚 ≥ 1 , 

0  otherwise. 
 

Here is a short table of values of Λ(𝑛) : 

𝑛: 1 2 3 4 5 6 7 8 9 10
Λ(𝑛): 0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0

 

The proof of the next theorem shows how this function arises naturally from the 

fundamental theorem of arithmetic. 

Theorem 1.4 

If 𝑛 ≥ 1 we have 

                                                    log 𝑛 = ∑  

𝑑∣𝑛

Λ(𝑑) … … … … … … … … … … … … (1) 

Proof  

The theorem is true if 𝑛 = 1 since both members are 0 . Therefore, assume that 𝑛 > 1 

and write 
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𝑛 = ∏  

𝑟

𝑘=1

𝑝𝑘 𝑎𝑘 

Taking logarithms we have 

log 𝑛 = ∑  

𝑟

𝑘=1

𝑎𝑘log 𝑝𝑘 

Now consider the sum on the right of (1). The only nonzero terms in the sum come 

from those divisors 𝑑 of the form 𝑝𝑘 𝑚 for 𝑚 = 1,2, … , 𝑎𝑘 and 𝑘 = 1,2, … , 𝑟. Hence 

∑  

𝑑∣𝑛

Λ(𝑑) = ∑  

𝑟

𝑘=1

∑  

𝑎𝑘

𝑚=1

Λ(𝑝𝑘
𝑚) = ∑  

𝑟

𝑘=1

∑  

𝑎𝑘

𝑚=1

log 𝑝𝑘 = ∑  

𝑟

𝑘=1

𝑎𝑘log 𝑝𝑘 = log 𝑛 

which proves (1). 
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CHAPTER 2 

EULER’S 𝝓 FUNCTION 

Let n be positive integer. Let Un denote the set of all positive integers less than n and 

coprime to it 

For example, 

                U6  =  {1,5} 

                U10  =  {1,3,7,9} 

                  U18  =  {1,5,7,11,13,17} 

 

Definition 2.1 

Euler’s 𝜙 function is a function 𝜙: N→N such that for any n ∈ N, 𝜙 (n) is the number 

of integers less than n and coprime to it 

In other words 

‘Euler’s 𝜙 function counts the number of elements in Un’ 

For example,    

𝜙(1) = 1, 𝜙(2) = 1, 𝜙(3) = 2, 𝜙(4) = 2, 𝜙(5) = 4
𝜙(6) = 2 … .

 

Theorem 2.1 

Let p be a prime. Then 𝜙 (p) = p-1 

Proof: 

By definition, any natural number strictly less than p is coprime to p, hence 

   𝜙 (p) = p-1  

 

Theorem 2.2 

If 𝑝 is a prime and 𝑘 > 0, then 

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1) 
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Proof: 

Consider the successive pk natural numbers not greater than pk  arranged in the 

following rectangular array of  p columns and  pk-1 rows 

1     2          .       .     p  

p+1     p+2          .       .    2p 

.     .          .       .     . 

.     .          .       .     .  

pk-p+1     pk-p+2      .      .     pk 

among these numbers only the ones at the rightmost sides are not coprime to pk and 

there are pk-1 members in that column. So  

   

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1). 

 

For example,  𝜙(8) = 23 − 22 = 4  which counts the number of elements in the set 

 U8  =  {1,3,5,7} 

By the fundamental theorem of arithmetic, we can write any natural number n as  

                                    n= 𝑝1
𝑘1 … … … . . 𝑝𝑟

𝑘𝑟 

where 𝑃𝑖  ‘s are distinct prime and k𝑖 ≥ 1  are integers. We already know how to find 

𝜙(𝑝𝑖
𝑘𝑖)  we would lie to see how 𝜙(𝑛) is related to 𝜙(𝑝𝑖

𝑘𝑖). This follows from a very 

important property of Euler’s 𝜙 Function 

 

Multiplicativity of Euler’s 𝝓 Function 

Theorem 2.3 

𝜙(mn) = 𝜙(m)𝜙(n) if  m and n are coprime natural numbers. 

Proof: 
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Consider the array of natural numbers not greater than mn arranged in m columns  and 

n rows in the following manner 

1 2 ⋯ 𝑟 ⋯ 𝑚
𝑚 + 1 𝑚 + 2 𝑚 + 𝑟 2𝑚

2𝑚 + 1 2𝑚 + 2 2𝑚 + 𝑟 3𝑚
⋮ ⋮ ⋮ ⋮

(𝑛 − 1)𝑚 + 1 (𝑛 − 1)𝑚 + 2 (𝑛 − 1)𝑚 + 𝑟 𝑛𝑚

 

Clearly each row of the above array has m distinct residues modulo m. Each column 

has n distinct residues modulo n: for 1 ≤ 𝑖, 𝑖 ≤ 𝑛 − 1 

im +j ≡ im + j (mod n) 

⇒ im ≡ im (mod n) 

⇒ i ≡ i (mod n)      (as gcd(m,n) = 1) 

⇒ i ≡ i 

Each row has 𝜙(m) residues coprime to m, and each column has 𝜙(n) residues 

coprime to n. Hence in total 𝜙(m)𝜙(n) elements in the above array which are 

coprime to both m and n, it follows that 

𝜙(mn) = 𝜙(m)𝜙(n) 

 

Theorem 2.4  

Let n be any natural numbers, then  

𝜙(𝑛) = 𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) ⋯ (1 −

1

𝑝𝑟
)  

Proof:   

By fundamental theorem of arithmetic, we can write  

𝑛 = 𝑃1
𝑘1𝑃2

𝑘2 … … . … 𝑃𝑟
𝑘𝑟 

Where 𝑝𝑖 are the distinct prime factor of n, and 𝑘𝑖 are the non negative integers. By 

previous theorem and proposition, 

  𝜙(𝑛) = 𝜙(𝑝1
𝑘1) ⋅ … , 𝜙(𝑝𝑟

𝑘𝑟) 

            =  𝑃1
𝑘1−1(𝑃1 − 1) ⋯ 𝑃𝑟

𝑘𝑟−1(𝑃𝑟 − 1) 
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            =  𝑝1
𝑘1 (1 −

1

𝑃1
) ⋯ 𝑃𝑟

𝑘𝑟 (1 −
1

𝑃𝑟
) 

   =  𝑛 (1 −
1

𝑝1
) ⋯ ⋅ (1 −

1

𝑝𝑟
)  

Theorem 2.5 

For n > 2,  𝜙 (n) is an even integer. 

Proof: 

First, assume that n is a power of 2, let us say that n = 2k ,  with k ≥ 2. By 

theorem 2.2, 

𝜙(𝑛) = 𝜙(2𝑘) = 2𝑘 (1 −
1

2
) = 2𝑘−1 

an even integer. If 𝑛 does not happen to be a power of 2, then it is divisible by an odd 

prime 𝑝; we therefore may write 𝑛 as 𝑛 = 𝑝𝑘𝑚, where 𝑘 ≥ 1 and gcd (𝑝𝑘, 𝑚) = 1. 

Exploiting the multiplicative nature of the phi-function, we obtain 

                                       𝜙(𝑛) = 𝜙(𝑝𝑘)𝜙(𝑚) = 𝑝𝑘−1(𝑝 − 1)𝜙(𝑚) 

which again is even because 2 | p – 1. 

 

Theorem 2.6 

For each positive integer n, 

  

𝑛 = ∑  

𝑑∣𝑛

𝜙(𝑑) 

Proof: 

Let us partition the set {1,2,…….,n} into mutually disjoint subsets Sd for each d/n, 

where  

𝑆𝑑 = {1 ≤ 𝑚 ≤ 𝑛 ∣ gcd (𝑚, 𝑛) = 𝑑} 

                                              =  {1 ≤
𝑚

𝑑
≤

𝑛

𝑑
∣ gcd (

𝑚

𝑑
,

𝑛

𝑑
) = 1} 

Then 
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 {1,2, … … . , n}  = ∑  

𝑑∣𝑛

𝑆𝑑 

⇒            𝑛 = ∑  

𝑑∣𝑛

𝜙 (
𝑛

𝑑
) 

                    = ∑  

𝑑∣𝑛

𝜙(𝑑) 

As for each divisor of n, n/d is also a divisor of n 

 

MOBIUS FUNCTION 

Definition 2.2 

The Mobius function  𝜇: 𝑁 ⟶ {0, ±1} is defined as  

𝜇(𝑛) = {

1     if 𝑛 = 1
0     if 𝑝2 𝑛⁄  for some prime 𝑝

(−1)𝑟      if 𝑛 = 𝑝1𝑝2 ⋯ 𝑝𝑟 , where 𝑝𝑖 are distinct primes 

 

For example,  

μ(1) = 1          μ(2) = −1              μ(3) = −1 

 μ(4) = 0        μ(5) = −1               μ(6) = 1 

If 𝑝 is a prime number, it is clear that 𝜇(𝑝) = −1; in addition, 𝜇(𝑝𝑒) = 0 for 𝑒 ≥ 2. 

Theorem 2.7 

The Mobius function is a multiplicative function i.e.  

μ(mn) = μ(m)μ(n), if m and n are relatively prime 

Proof: 

Let m and n be coprime integers, we can consider the following to cases 

Case 1:  let μ(mn) = 0 then there is a prime p such that  
𝑝2

𝑚𝑛⁄ . As m and n are 

coprime p cannot divide both m and n hence either 
𝑝2

𝑚⁄  or  
𝑝2

𝑛⁄  . Therefore either   

μ(m) = 0 or μ(n) = 0 and we have μ(mn) = μ(m)μ(n) 

Case 2: suppose that μ(mn) ≠ 0 then mn is square free, hence so are m and n. let  
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𝑚 =  𝑝1 … … … 𝑝𝑟   and 𝑛 =  𝑞1 … … … 𝑞𝑠   where 𝑝𝑖 𝑎𝑛𝑑 𝑞𝑗  are all distinct primes then 

mn = 𝑝1 … … … 𝑝𝑟𝑞1 … … … 𝑞𝑠 where all the primes occurring in the factorization of 

mn are distinct. Hence  

 𝜇(𝑚𝑛) = (−1)𝑟+𝑠   

              = (−1)𝑟(−1)𝑠        

              =  μ(m)μ(n) 

Theorem 2.8 

      

∑  

𝑑∣𝑛

𝜇(𝑑) = {
1     if 𝑛 = 1
0     if 𝑛 > 1

 

Where d runs through all the positive divisors of n. 

Proof:  

𝐿𝑒𝑡   𝐹(𝑛)  = ∑  

𝑑∣𝑛

𝜇(𝑑) 

As  μ is multiplicative, so is F(n) by the theorem (F be a multiplicative arithmetic  

function  𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑)  then F is also a multiplicative arthmetic function)  

Clearly  

𝐹(1) = ∑  

𝑑∣𝑛

𝜇(𝑑) 

             = μ(1) 

             = 1 

For integers which are  prime power, i.e. of the form pk for some k ≥ 1 

                                    𝐹(𝑝2) = μ(1) + μ(p) + μ(p2) + ⋯ … … … . . +μ(p𝑘)    

                  = 1 + (-1) + 0……………+ 0 

                 = 0 

Now consider any integer n, and consider its prime factorization. Then  

      𝑛 = 𝑝1
𝑘1 … … … … … . 𝑝𝑟

𝑘𝑟 ,         𝑘𝑖 ≥ 1 
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 ⇒    𝐹(𝑛) =  ∏𝐹(𝑝𝑖
𝑘𝑖) 

        = 0 

Mobius inversion formula 

The following theorem is known as Mobius inversion formula 

Theorem 2.9 

Let F and  f  be two function from the set N of natural number to the field complex 

number C such that  

𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑) 

Then we can express f(n) as   

𝑓(𝑛) = ∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) 

         = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝐹(𝑑) 

Proof: 

First observe that if d is divisor of n so is n/d. Hence both the summation in the last 

line of  the theorem are same. Now  

∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) = ∑  

𝑑∣𝑛

(𝜇(𝑑) ∑  

𝑐∣(𝑛/𝑑)

𝑓(𝑐)) 

The crucial step in the proof  is to observe that the set of S of pairs of integers (c,d) 

with d|n and c|n/d is the same as the set T of pairs (c,d) with c/n and d|n/c. 

∑  

𝑑∣𝑛

𝜇(𝑑)𝐹 (
𝑛

𝑑
) = ∑  

𝑑∣𝑛

(𝜇(𝑑) ∑  

𝑐∣(𝑛/𝑑)

𝑓(𝑐)) 

      

                           = ∑  

𝑑∣𝑛

( ∑  

𝑐∣(𝑛/𝑑)

𝜇(𝑑)𝑓(𝑐)) 
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             = ∑  

(𝑐,𝑑)∈𝑆

𝑓(𝑐)𝜇(𝑑) 

           = ∑  
(𝑐,𝑑)∈𝑇

𝑓(𝑐)𝜇(𝑑) 

                         = ∑  

𝑐∣𝑛

(𝑓(𝑐) ∑  

𝑑∣(𝑛/𝑐)

𝜇(𝑑)) 

       = F(n) 

𝐴𝑠 ∑  

𝑑∣𝑛

𝜇(𝑑) = 0    𝑢𝑛𝑙𝑒𝑠𝑠 𝑛
𝑐⁄ = 1, which happens when c = n  

Let us demonstrate this with n = 15  

∑  

𝑑∣15

𝜇(𝑑)𝐹 (
15

𝑑
) = 𝜇(1)[ 𝑓 (1) +  𝑓 (3) +  𝑓 (5) +  𝑓 (15)] + 𝜇(3)[ 𝑓 (1) +  𝑓 (5)] 

                                +𝜇(5)[ 𝑓 (1) +  𝑓 (3)] + 𝜇(15)[ 𝑓 (1)] 

                             = f (1)[μ(1) + μ(3) + μ(5) + μ(15)] + f (3)[μ(1) + μ(5)] + f (5)[μ(1) + 

                               μ (5)] + f(15) μ(1) 

                            = f(1).0 + f(3).0 + f(5).0 + f(15) 

                            = f(15) 

The above theorem leads to the following interesting identities  

1. we know that for any positive integer n,  

∑  

𝑑∣𝑛

𝜙(𝑑) = 𝑛 

Where 𝜙(𝑛) is Euler’s 𝜙 function. Hence  

𝜙(𝑛) =  ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝑑 

For example, 

𝜙(10) =  μ(1)10 +  μ(2)5 +  μ(5)2 + μ(10)1   
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                                               = 10 - 5 – 2 + 1 

                                               = 4 

2. similarly  

 

𝜎(𝑛) = ∑  

𝑑∣𝑛

𝑑 

                      𝑛   = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝜎(𝑑) 

For example, 

With n = 10  

μ(10). 1 + μ(2)(1 + 5) + μ(5)(1 + 3) + μ(1)(1 + 3 + 5 + 10) 

                = 1 – 1 – 5 – 1 – 3 + 1 + 3 +5 + 10 

     = 10 

We have seen before that if multiplicative so is 𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑). But we can now 

Prove that converse applying the Mobius inversion formula 

Theorem 2.10 

If F is a multiplicative function and 

𝐹(𝑛) = ∑  

𝑑∣𝑛

𝑓(𝑑) 

then f is also multiplicative. 

Proof: 

By the Mobius inversion formula we know that  

𝑓(𝑛) = ∑  

𝑑∣𝑛

𝜇 (
𝑛

𝑑
) 𝐹(𝑑) 

Let m and n be relatively prime positive integers. We recall that any divisor 

d of mn can be uniquely written as d = d1, d2, where d1 |m, d2 | n, and  

gcd(d1, d2) = 1 = gcd(
𝑚

𝑑1
,

𝑛

𝑑2
). 
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Conversely if d1/m and d2/n then d1d2/mn    thus, 

𝑓(𝑚𝑛) = ∑  

𝑑∣𝑚𝑛

𝜇(𝑑)𝐹 (
𝑚𝑛

𝑑
)

= ∑  
𝑑1|𝑚
𝑑2|𝑛

𝜇(𝑑1𝑑2)𝐹 (
𝑚𝑛

𝑑1𝑑2

)

= ∑  
𝑑1|𝑚
𝑑2|𝑛

𝜇(𝑑1)𝜇(𝑑2)𝐹 (
𝑚

𝑑1

) 𝐹 (
𝑛

𝑑2

)

= ∑  

𝑑1∣𝑚

𝜇(𝑑1)𝐹 (
𝑚

𝑑1

) ∑  

𝑑2∣𝑛

𝜇(𝑑2)𝐹 (
𝑛

𝑑2

)

= 𝑓(𝑚)𝑓(𝑛)

 

In view of the above theorem we can say that as N(n) = n is a multiplicative function 

so is 𝜙(𝑛) because  

∑  

𝑑∣𝑛

𝜙(𝑑) = 𝑛 =  N(n)  
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CONCLUSION 

 

The purpose of this project gives a simple account of Arithmetic function, Euler’s phi 

function and Mobius Function. The study of these topics given excellent introduction 

to the subject called ‘NUMBER THEORETIC FUNCTION’ 

Number Theoretic Function demands a high standard of rigor. Thus, our presentation 

necessarily has its formal aspect with care taken to present clear and detailed 

argument. An understanding of the statement of the theorem, number theory proof is 

the important issue. In the first chapter we discuss about function τ and σ are both 

multiplicative function. If f is a multiplicative function and F is defined by  

𝐹(𝑛) = ∑  𝑑∣𝑛 𝑓(𝑑), then F is also multiplicative. In the second chapter 2 we discuss 

about that if p is prime the 𝜙(𝑝) = 𝑝 − 1, 𝜙(𝑚𝑛) = 𝜙(𝑚)𝜙(𝑛). The Mobius 

function is multiplicative function if f is multiplicative function and  𝐹(𝑛)=∑  𝑑∣𝑛 𝑓(𝑑), 

then F is also multiplicative. 
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INTRODUCTION

This chapter gives an introduction to the theory of normed linear spaces. A skeptical reader may
wonder why this topic in pure mathematics is useful in applied mathematics. The reason is quite
simple: Many problems of applied mathematics can be formulated as a search for a certain
function, such as the function that solves a given differential equation. Usually the function
sought must belong to a definite family of acceptable functions that share some useful properties.
For example, perhaps it must possess two continuous derivatives. The families that arise
naturally in formulating problems are often linear spaces. This means that any linear combination
of functions in the family will be another member of the family. It is common, in addition, that
there is an appropriate means of measuring the “distance” between two functions in the family.
This concept comes into play when the exact solution to a problem is inaccessible, while
approximate solutions can be computed. We often measure how far apart the exact and
approximate solutions are by using a norm. In this process we are led to a normed linear space,
presumably one appropriate to the problem at hand. Some normed linear spaces occur over and
over again in applied mathematics, and these, at least, should be familiar to the practitioner.
Examples are the space of continuous functions on a given domain and the space of functions
whose squares have a finite integral on a given domain.
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PRELIMINARIES

1) LINEAR SPACES

We introduce an algebraic structure on a set and study functions on X which are well behaved𝑋
with respect to this structure. From now onwards , K will denote either R , the set of all real
numbers or C, the set of all complex numbers. For k C , Re k and Im k will denote the  real and∈
imaginary part of k.

A linear space(or a vector space) over K is a non-empty set along with a function𝑋
, called addition and a function : K called scalar multiplication, such+  :  𝑋 × 𝑋 → 𝑋 · × 𝑋 → 𝑋

that for all and K , we have𝑥 ,  𝑦 ,  𝑧 ∈ 𝑋  𝑘 ,  𝑙 ∈

𝑥 + 𝑦 = 𝑦 + 𝑥

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧

∃0∈𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + 0 = 𝑥,

∃ − 𝑥 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + (− 𝑥) = 0 ,

,𝑘 · (𝑥 + 𝑦) = 𝑘 · 𝑥 + 𝑘 · 𝑦

(𝑘 + 𝑙)⋅𝑥 = 𝑘 · 𝑥 + 𝑙 · 𝑥,

(𝑘𝑙)⋅𝑥 = 𝑘 · (𝑙 · 𝑥),

1⋅𝑥 = 𝑥.

We shall write in place of . We shall also adopt the following notations. For𝑘𝑥 𝑘 · 𝑥
K and subsets of ,𝑥, 𝑦 ∈ 𝑋, 𝑘 ∈ 𝐸, 𝐹 𝑋

𝑥 + 𝐹 = {𝑥 + 𝑦: 𝑦 ∈ 𝐹},

`𝐸 + 𝐹 = {𝑥 + 𝑦: 𝑥 ∈ 𝐸, 𝑦 ∈ 𝐹},

𝑘𝐸 = {𝑘𝑥: 𝑥 ∈ 𝐸}.

2) BASIS

A nonempty subset of is said to be a subspace of if whenever and𝐸 𝑋 𝑋 𝑘𝑥 + 𝑙𝑦 ∈ 𝐸 𝑥, 𝑦 ∈ 𝐸
K . If , then the smallest subspace of containing is𝑘, 𝑙 ∈ ∅≠𝐸 ⊂ 𝑋 𝑋 𝐸
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𝑠𝑝𝑎𝑛⁡𝐸 = 𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
: 𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 ,  𝑘

1
, …, 𝑘

𝑛
∈ 𝐾{ }

It is called the span of . If span , we say that spans . A subset of is said to be𝐸 𝐸 = 𝑋 𝐸 𝑋 𝐸 𝑋
linearly independent if for all and K , the equation𝑥

1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

implies that It is called linearly dependent if it is not𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

1
= ⋯ = 𝑘

𝑛
= 0.

linearly independent, that is, if there exist and K such that𝑥
1
, …, 𝑥

𝑛
∈ 𝐸 𝑘

1
, …, 𝑘

𝑛
∈

, where at least one is nonzero.𝑘
1
𝑥

1
+ ⋯ + 𝑘

𝑛
𝑥

𝑛
= 0 𝑘

𝑗

A subset E of X is called a Hamel basis or simply basis for X if span of E = X and E is
linearly independent .

3) DIMENSION

If a linear space has a basis consisting of a finite number of elements , then X is called finite𝑋
dimensional and the number of elements in a basis for is called the dimension of , denoted as𝑋 𝑋
dimX . Every basis for a finite dimensional linear space has the same (finite) number of elements
and hence the dimension is well-defined. The space is said to have zero dimension. Note that{0}
it has no basis !

If a linear space contains an infinite linearly independent subset, then it is said to be infinite
dimensional.

4)METRIC SPACE

We introduce a distance structure on a set and study functions on which are well-behaved𝑋 𝑋
with respect to this structure.

A metric on a nonempty set is a function R𝑑 𝑋 𝑑: 𝑋 × 𝑋 →
such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

d(x, y) 0 and d(x , y) = 0 iff x=y≥

d(y , x) = d(x , y)

d(x , y) d(x , z) + d(z , y) .≤

The last condition is known as the triangle inequality. A metric space is a nonempty set along𝑋
with a metric on it.
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5)CONTINUOUS FUNCTIONS

Roughly speaking, a function from a metric space to a metric space is continuous if it sends
‘nearby’ points to ‘nearby’ points. If and are metric spaces with metrics and respectively,𝑋 𝑌 𝑑 𝑒
then a function is said to be continuous at if for every 0 , there is some𝐹: 𝑋 → 𝑌 𝑥

0
∈ 𝑋 ϵ⟩

(possibly depending on and ) such that for all satisfyingδ > 0 ϵ 𝑥
0

𝑒 𝐹(𝑥), 𝐹 𝑥
0( )( ) < ϵ 𝑥 ∈ 𝑋

. Further, is said to be continuous on if it is continuous at every point of It is𝑑 𝑥, 𝑥
0( ) < δ 𝐹 𝑋 𝑋.

easy to see that is continuous on if and only if the set F -1(E) is open in X whenever the set E𝐹 𝑋
is open inY. Also , this happens iff F(xn) F(x) in Y whenever xn x in X.→ →

6) UNIFORM CONTINUITY

We note that a continuous function is, in fact, uniformly𝐹: 𝑇 → 𝑆
continuous, that is, for every , there exists someϵ > 0 δ > 0

such that whenever . This can be seen as follows. Let . By𝑒 𝐹(𝑡), 𝐹(𝑢( )) < ϵ 𝑑 𝑡, 𝑢( ) < δ 𝑡 ∈ 𝑇

the continuity of at , there is some , such that whenever𝐹 𝑡 ∈ 𝑇 δ
𝑡

𝑒 𝐹(𝑡), 𝐹 𝑢( )( ) < ε
2

.𝑑 𝑡, 𝑢( ) < δ
𝑡

7) FIELD

A ring is a set R together with two binary operations + and ( which we call addition and·
multiplication ) such that the following axioms are satisfied .

➢ R is an abelian group with respect to addition
➢ Multiplication is associative
➢ the left distributive law a(b + c) = (a b) + (a c) and the right distributive∀𝑎 , 𝑏, 𝑐 ∈ 𝑅 · ·

law (a + b)c = (a c) + (b c) , hold .· ·

A field is a commutative division ring
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CHAPTER 1

NORMED LINEAR SPACE

Let X be a linear space over K .  A norm on X is the function || || from to R such that𝑋 ∀
x,y X and k K ,∈ ∈

and  || || = 0  if and only if x = 0  ,||𝑥||≥0 𝑥

||x + y|| ||x|| + ||y|| ,≤

||kx|| =|k| ||x|| .

A norm is the formalization and generalization to real vector spaces of the intuitive
notion of “ length” in the real world .

A normed space is a linear space with norm on it .

For x and y in X , let
d(x,y) = ||x - y||

Then d is a metric on X so that (X,d) is a metric space , thus every normed space is a metric
space

➢ Every normed linear space is a metric space . But converse may not be true .

Example :

d(x,y) = , x , y X
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦| ∀ ∈

||x - y|| =⇒
|𝑥 − 𝑦|

1 + |𝑥 − 𝑦|

||z||  = , z = x - y X⇒  
|𝑧|

1 + |𝑧| ∈
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|| z||  =α
|α𝑧|

1 +|α𝑧|

=
|α| |𝑧|

1 + |α| |𝑧|

= | |α
|𝑧|

1 + |α| |𝑧|( )
| | ||z|| .≠ α

➢ Result

Let X be a normed linear space . Then ,

| ||x|| - ||y|| | ||x - y|| , x , y X≤ ∀ ∈

Proof :

||x|| = || ( x - y ) + y|| ||x - y|| + ||y||≤

||x|| - ||y|| ||x - y|| (1)⇒ ≤ →

x y↔

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y|| (2)⇒ ≤  →

From (1) and (2)

|||x|| - ||y||| ||x - y||≤  

➢ Norm is a continuous function

Let xn x , as n→ → ∞
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xn - x 0 as n ∞⇒ → →

||xn - x|| 0 as n ∞⇒ → →

| ||xn|| - ||x|| | ||xn - x|| 0 as n ∞≤ → →

||xn|| - ||x|| 0 , as n ∞⇒ → →

||x|| is continuous⇒

➢ Norm is a uniformly continuous function

We have , || || :X R . Let x,y X and > 0→ ∈  ε

Then ||x|| = ||x - y + y ||

||x - y|| + ||y||                               ≤

||x|| - ||y|| ||x - y|| )        ⇒ ≤ → (1

Interchanging x and y ,

||y|| - ||x|| ||y - x||≤

- ( ||x|| - ||y|| ) ||x - y||⇒ ≤

||x|| - ||y|| - ||x - y|| 2)⇒  ≥ → (

Combining (1) and (2)

- ||x - y|| ||x|| - ||y|| ||x - y||≤ ≤

That is ,

| ||x ||- ||y|| | ||x - y||≤

Take , then whenever ||x - y|| < , | ||x|| -|| y|| |<δ = ε δ  ε
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Therefore || || is a uniformly continuous function .

➢ Continuity of addition and scalar multiplication

To show that + : X X X and : K X X are continuous functions.× → · × →

Let (x,y) X X . To show that + is continuous at (x ,y) , that is ,  to show∈  ×
that for each (x,y) X X if xn x and yn y in X , then∈ × → →

+(xn , yn) +(x , y) ;→

That is ,
xn + yn x + y .→

Consider
||( xn + yn) - (x + y )|| = ||xn - x + yn - y||

||xn - x|| + ||yn - y||≤

Given xn x and yn y , for each , N1→ → ϵ > 0 ∃ ∋

||xn - x|| < n N1 ,   and N2
ε
2 ∀ ≥ ∃ ∋

||yn - y|| < n N2
ε
2 ∀ ≥

\

Take N = max { N1, N2}

Then ||xn - x|| < and ||yn - y|| < n Nε
2

ε
2 ∀ ≥

Therefore ||(xn + yn) - (x + y)|| + = n N≤ ε
2

ε
2 ε ∀ ≥

That is , xn + yn x + y→

Now to show that : K X X is continuous· × →

Let (k , x) K X∈ ×

13



To show that if kn k and xn x , then knxn kx→ → →

Since kn k   , > 0 N1 |kn - k| < n N1→ ∀ ε ∃ ∋  ε
2

∀ ≥

Since xn x   , > 0 N2 ||xn - x|| < n N2→ ∀ ε ∃ ∋  
ε
2 ∀ ≥

Consider ||knxn - kx|| = ||knxn - kx + xnk - xnk ||

= ||xn (kn - k) + k(xn - x)||

||xn(kn - k)|| + ||k(xn - x)||≤

=  ||xn|| |kn- k| +  |k| ||xn - x||

||xn|| + |k|≤ ε
2

ε
2

∴   knxn kx→

➢ Examples of normed space

1)   Spaces Kn (K = R or C)

For n = 1 ,  the absolute value of function | | is a norm on K , since k K∀ ∈

We have ,

||k|| = ||k || = |k| ||1|| , by definition .· 1

But ||1|| is a positive  scalar .

∴ ||k|| is a positive scalar multiple of the absolute value function .

∴  any norm on K is a positive scalar multiple of the absolute value
function

For n > 1 , let p be a real number≥ 1
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Kn = { ( x(1) , x(2) , . . . , x(n) ) : x(i) K , i = 1 , 2 , . . . , n }∈

For x Kn , that is , x = ( x(1) , x(2) , . . . , x(n) ) ,  define∈

||𝑥||
𝑝

= (|𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝

Then || ||p is a norm on Kn

When p = 1 ,

Then , ||x||1 = |x(1)| + |x(2)| + . . . + |x(n)|

Since |x(i)| 0 i = 1 , 2 , . . . , n   , ||x||1 0≥ ∀ ≥

And ||x||1 = 0 |x(1)| + . . .  +|x(n)| = 0⇔

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0                          ⇔

Now ||kx||1 =  |kx(1)| + |kx(2)| + . . . + |kx(n)|

= |k| |x(1)| + . . . + |k| |x(n)|

= |k| ( |x(1)| + . . . + |x(n)| )

= |k| ||x||1

||x + y||1 = |(x + y)(1)| + . . . + |(x + y)(n)|

= |x(1) + y(1)| + . . . + |x(n) + y(n)|

|x(1)| + |y(1)| + . . . + |x(n)| + |y(n)|≤

= |x(1)| + . . . + |x(n)| + |y(1)| + . . . + |y(n)|

= ||x||1 + ||y||1
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Consider 1<p<∞

Now  , ||𝑥||
𝑝

= ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

Since x(i) 0 i , we have ||x||p 0| |𝑝 ≥ ∀ ≥

And ||𝑥||
𝑝

= 0⇔( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝)1/𝑝 = 0

= 0 i⇔ |𝑥(𝑖)|𝑝 ∀

|x(i)| = 0 i⇔ ∀

x(i) = 0 i⇔ ∀

x = ( x(1) , . . . , x(n) ) = 0 .                          ⇔
Now

||𝑘𝑥||
𝑝

= ( |𝑘𝑥(1)|𝑝 +.  .  .  + |𝑘𝑥(𝑛)|𝑝)1/𝑝

= ( |𝑘|𝑝 |𝑥(1)|𝑝 +.  .  .  + |𝑘|𝑝 |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ( |𝑥(1)|𝑝 +.  .  .  + |𝑥(𝑛)|𝑝 )1/𝑝

= |𝑘| ||𝑥||
𝑝 .

              ||𝑥 + 𝑦||
𝑝

= ( |𝑥(1) + 𝑦(1)|𝑝 +.  .  .  + |𝑥(𝑛) + 𝑦(𝑛)|𝑝 )1/𝑝

We have by Minkowski’s inequality ,

+
𝑖=1

𝑛

∑ |𝑥(𝑖) + 𝑦(𝑖)|𝑝( )1/𝑝

≤
𝑖=1

𝑛

∑ |𝑥(𝑖)|𝑝( )
1/𝑝

𝑖=1

𝑛

∑ |𝑦(𝑖)|𝑝( )1/𝑝

Then

16



||𝑥 + 𝑦||
𝑝
 ≤  |𝑥(1)|𝑝 +.  .  . + |𝑥(𝑛)|𝑝( )

1/𝑝
+  |𝑦(1)|𝑝 +.  .  .  + |𝑦(𝑛)|𝑝( )

1/𝑝

= ||𝑥||
𝑝

+ ||𝑦||
𝑝

Then , for 1 p< , is a norm on Kn≤ ∞ || ||
𝑝

When p = , define∞ ||𝑥||
∞

= 𝑚𝑎𝑥 { |𝑥(1)| , |𝑥(2)| ,.  .  .  , |𝑥(𝑛)| }

Then it is a norm on Kn

0 since each values |x(i)| 0||𝑥||
𝑝 

≥ ≥

So that

max {|x(i)| , i=1, . . . , n} 0≥

= 0||𝑥||
∞

= 0 ⇔𝑚𝑎𝑥 { |𝑥(𝑖)| : 𝑖 = 1,.  .  .  , 𝑛 }

|x(i)| = 0 i⇔ ∀

x(i) = 0 , i⇔ ∀

x = 0⇔

||𝑘𝑥||
∞

 =  𝑚𝑎𝑥 { |𝑘𝑥(1)| ,.  .  .  , |𝑘𝑥(𝑛)| }

= max { |k| |x(1)| , . . . , |k| |x(n)|}

= |k| max {|x(1)| , . . . , |x(n)|}

= |k| ||x||
∞

||x + y| = max { |x(1) + y(1)| , . . . , |x(n) + y(n)| }|
∞

max { |x(1)| + |y(1)| , . . . , |x(n)| + |y(n)| }≤

17



max { |x(1)| , . . . , |x(n)| } + max { |y(1)| , . . . , |y(n)| }≤

= ||x| + ||y||
∞

|
∞

2) Sequence space

Let 1 p < , = { x = ( x(1) , x(2) , . . . ) ;  x(i) K and x(j) < } , that is , is the≤ ∞ 𝑙𝑝 ∈
𝑗=1

∞

∑ | |𝑝 ∞ 𝑙𝑝

space of p-summable scalar sequences in K . For x = (x(1) , x(2) , . . . ) ,∈ 𝑙𝑝

let ||x||p = ( |x(1)|p + |x(2)|p + . . . )1/p . Then it is a norm on lp.

That is , || ||p is a function from lp to R .

If p = 1 , then l1 is a linear space and ||x||1 = ( |x(1)| + |x(2)| + . . . ) is a norm on l1

Let p = . Then is the linear space of all bounded scalar sequences . And ,∞ 𝑙∞

||x = sup { |x(j)| : j = 1, 2, 3, . . . }||
∞

Then is a norm on|| ||
∞

𝑙∞
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   CHAPTER 2

THEOREMS ON NORMED SPACES

a) Let  Y  be a subspace of a normed space X , then Y and its closure  are normed spaces with𝑌
the induced norm.

b) Let Y be  a closed subspace of a normed space X , for x +Y in the quotient space X/Y, let
|||x +Y||| = inf { ||x+y|| : y Y} . Then |||   ||| is a norm on X/Y , called the quotient norm.∈

        A sequence (xn + Y) converges to x + Y in X/Y iff there is a sequence (yn) in Y , (xn+ yn)
converges to x in X.

c) Let || ||pbe a norm on the linear space Xp , j = 1,2,…. . Fix p such that 1 p≤ ≤∞

For x = (x(1) , x(2) , … , x(m))   that  is the product space X =X1× X2 × …× Xm ,

  Let , if 1  p <||𝑥||
𝑝
 =   ||𝑥(1)||

1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

≤ ∞

 ||x||p = max { ||x(1)||1 , … , ||x(m)||m }   ,   if p = .∞

 Then ||   ||p is a norm on X.

A sequence (xn) converges to x in  X (xn(j)) converges to x(j) in Xj      j=1,2,…,m.  ⇔ ∀

Proof:

a) Since X is a normed space, there is a norm on X to Y . Since  Y is a subspace of X,   

||  ||y: Y   R is a function. To show that ||  ||y is a norm on Y.       →

For y  Y ,    || y||Y  = ||y|| , then∈

||y||Y   ( ∵||y||  0 )    and     ||y||Y = 0 y = 0≥ 0  ≥ ⇔

||ky||Y = ||ky|| = |k| ||y|| = |k| ||y||y .

Let y1 , y2  Y.  Then ,∈

||𝑦
1

+ 𝑦
2
||

𝑦
= ||𝑦

1
+ 𝑦

2
|| ≤ ||𝑦

1
|| + ||𝑦

2
|| = ||𝑦

1
||

𝑦
+ ||𝑦

2
||

𝑦

Now the continuity of addition and scalar multiplication shows that  is a subspace of X, since if𝑌
xn  x and yn y ,   xn , yn   , then→ → ∈ 𝑌

xn + yn  x + y (by continuity of addition)    and→
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kxn  kx (by continuity of scalar Xn) .→

Since   is closed , x + y and kx .  Therefore   X.𝑌 ∈ 𝑌 ∈ 𝑌 𝑌 ≤

  norm on X induces a norm on Y and∴ 𝑌

b) X/Y , the quotient space equals X/Y={ x + Y : x X }.∈

|||x + y||| = inf { ||x + y|| : y Y }∈

Claim: |||  ||| is a norm on X/Y , called quotient norm

• Let x X ,∈

|||x + Y||| = inf { ||x + y|| : y Y }   0.∈ ≥

|||x + Y|||  0 .∴ ≥

   If |||x + y||| = 0 ( 0 in X/Y is Y) , then there is a sequence (yn) in Y    ∋

 ||x + yn ||  0→

                           ⇒                x + yn  0→

                           ⇒                 yn  -x→

Since yn Y and Y is closed∈

-x Y   ⇔ x Y ( Y is a subspace)∈ ∈ ∵

                    ⇔x + Y = Y , zero in X/Y.

• For k K ,∈

|||k(x + Y)||| = |||kx + Y|||

                                          = inf { ||k(x + y)|| : y Y}∈

                                          = inf { |k| ||x + y|| : y Y}∈

                                          = |k| inf { ||x + y|| : y Y}∈

= |k| |||x + Y||| .

• Let x1 , x2 X . Then∈

               |||x1 + Y||| = inf { ||x1 + y|| : y Y } . Then y1  Y∈ ∃ ∈ ∋

               |||x1 + Y||| +   >  ||x1 + y1|| ,  and
ε
2
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                  |||x2 + Y||| = inf { ||x2 + y|| : y Y}  , Then   y2 Y  ∈ ∃ ∈ ∋

                                |||x2 + Y||| +   >  ||x2 + y2|| .
ε
2

||x1 + y1 + x2 + y2 ||     ||x1 + y1|| + ||x2 + y2||≤

  |||x1 + Y||| + + |||x2 + Y||| +≤ ε
2

ε
2

Let y = y1 + y2 Y . Then ,∈

                    ||(x1+x2) + y||   |||x1 + Y||| + |||x2 + Y||| + ℇ    —(1)≤

Now ,  |||(x1 + Y) + (x2 + Y)||| = |||x1 + x2 + Y|||

                                                =inf { ||x1 + x2 + y|| : y Y }∈

                                             < ||x1 + x2 + y||

                                           |||x1 + Y||| + |||x2 + Y||| + ℇ          (by (1) )≤

since ℇ is arbitrary , we have  

|||(x1 + Y) + (x2 + Y)|||   |||x1 + Y||| + |||x2 + Y|||≤

∴ |||   |||  is a norm on X/Y.

Let (xn + Y) be a sequence in X/Y . Assume that (yn) is a sequence in Y   (xn + yn) converges∋
to x in X.

That is ,  (xn - x + yn) converges to 0 .      —(1)

Claim: (xn + Y) converges to x + Y.

  Consider

|||xn + Y -  (x+Y)||| = |||(xn - x) + Y|||

                                                       = inf { ||xn - x + yn|| : y Y }∈

                                                        ||xn - x + yn||      yn Y .≤ ∀ ∈

Then by (1) , xn + Y converges to x + Y in X/Y.

   Conversely assume that the sequence (xn + Y)  x + Y in X/Y.→

   Consider |||xn + Y - (x + Y)||| = |||xn - x + Y|||

                                                    = inf { ||xn -x + y|| : y Y }∈

Then we can choose yn Y ∈ ∋
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                       ||xn - x + yn|| <  |||(xn - x) + Y||| + ,  n=1,2,3,….1
𝑛

Since xn+Y  x+Y , we get→

             (xn - x + yn) converges to zero as n →∞

That is , (xn + yn) converges to x in X as n →∞

c) Consider   1  p < ≤ ∞

          Given that

||𝑥||
𝑝 

= (||𝑥(1)||
1
𝑝 + ||𝑥(2)||

2
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝 )1/𝑝

  Clearly , ||x||p  0 .  ≥

  Since each ||𝑥(𝑖)||
𝑖
𝑝 ≥ 0 .

              ||x||p = 0  ⇔   = 0   ∀ j = 1, . . . ,m|𝑥(𝑗)|
𝑗
𝑝

                                         ⇔  x(j) = 0           ∀ j.

                                         ⇔  x = (x(1), . . . ,x(m)) = 0

                    ||kx||p =                            ||𝑘𝑥(1)||
1
𝑝 +.  .  . + ||𝑘𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

   =  |𝑘|𝑝||𝑥(1)||
1
𝑝 +.  .  . + |𝑘|𝑝||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                            = |𝑘|  ||𝑥(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

, k K and x X= |𝑘| ||𝑥||
𝑝

∈ ∈

Now, ||𝑥 + 𝑦||
𝑝

=  ||𝑥(1) + 𝑦(1)||
1
𝑝 +.  .  . + ||𝑥(𝑚) + 𝑦(𝑚)||

𝑚
𝑝( )1/𝑝

  (by Minkowski’s inequality)

                                 ≤

 ||𝑥(1)||
1

+ ||𝑦(1)||
1( )𝑝 +.  .  .  +  ||𝑥(𝑚)||

𝑚
+ ||𝑦(𝑚)||

𝑚( )𝑝( )1/𝑝

                                 +          (Minkowski’s inequality )≤
𝑗=1

𝑚

∑ ||𝑥(𝑗)||
𝑗
𝑝( )1/𝑝

𝑗=1

𝑚

∑ ||𝑦(𝑗)||
𝑗
𝑝( )1/𝑝
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                                =  ||𝑥(1)||
1
𝑝 +.  .  .  + ||𝑥(𝑚)||

𝑚
𝑝( )1/𝑝

                                = ||x||p + ||y||p

        Now suppose  p =      ∞

  ||x||∞  = max { ||x(1)||1 , . . . , ||x(m)|| m }

||x||∞  0   Since ||x(j)||   0 ,       ∀ j≥ ≥

||x||∞  = 0          ⇔  ||x(m)|| = 0      ∀ m

                                       ⇔  x(m) = 0      ∀ m

                                       ⇔ x = 0

||kx||∞  = max { ||kx(1)||1 , . . . ,  ||kx(m)||m }

               = |k| max { ||x(1)||1 , . . . , ||x(m)||m }       

   =  |k| ||x||∞

||x + y||∞ = max { ||x(1) + y(1)||1, . . . , ||x(m) + y(m)||m }

                  max { ||x(1)||1 + ||y(1)||1 , . . . , ||x(m)||m + ||y(m)||m }≤

                                =  max { ||x(1)||1 , . . . ,  ||x(m)||m }   + max { ||y(1)||1 , . . . , ||y(m)||m }

                                = ||x||∞ + ||y||∞

We now consider  ,  

||𝑥
𝑛

− 𝑥(1)||
𝑝

=  ||𝑥
𝑛
(1) − 𝑥(1( )||

1
𝑝 +.  .  . + ||𝑥

𝑛
(𝑚) − 𝑥(𝑚)||

𝑚
𝑝 )

1/𝑝

Then  

xn  x in X      ⇔  ||xn - x ||p   0 → →

                                        ⇔  ||xn(j) - x(j)  0||
𝑗
𝑝 →

                                        ⇔  xn(j) - x(j)  → 0

                                        ⇔  xn(j) → x(j) in X j .∀
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RIESZ  LEMMA

Let be a normed space . be a closed subspace of and . Let be a real number𝑋 𝑌 𝑋 𝑋 ≠ 𝑌 𝑟
such that . Then there exist some xr X such that ||xr||  = 1 and0 < 𝑟 < 1 ∈

r<dist ( xr , Y ) 1≤

Proof :

We have ,

dist (x , Y) = inf { d(x , y) : y Y}∈

= inf { ||x - y|| : y Y}∈

Since Y X , consider x X x Y.≠ ∈ ∋ ∉

If dist(x , Y) = 0 , then ||x - y|| = 0 x = Y ( ∵ Y is closed )⇒ ∈𝑌

Therefore ,

dist (x , Y) 0≠

That is ,

dist (x , Y) > 0

Since 0 < r < 1  , > 1
1
𝑟

> dist (x , Y)⇒
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟

That is  , is not a lower bound of { ||x - y|| : y Y }
𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

𝑟 ∈

Then y0 Y ||x - y0|| < (1)∃ ∈ ∋
𝑑𝑖𝑠𝑡(𝑥 , 𝑌)

𝑟    →

Let xr = . Then xr X
𝑥 −  𝑦

0

||𝑥 − 𝑦
0
|| ∈

( ∵y0 Y , x Y x - y0 X and ||x - y0|| 0 )∈ ∉ ⇒ ∈ ≠
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Then ||xr|| =|| || = = 1
𝑥 − 𝑦

0

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

||𝑥 − 𝑦
0
||

Now to prove r < dist( ) 1𝑥
𝑟
, 𝑌 ≤

We have dist(xr , Y) = inf { ||xr - y|| : y Y }∈

||xr - y|| y Y≤ ∀ ∈

In particular, 0 , so that dist(xr , Y) ||xr - 0|| = 1∈ 𝑌 ≤

That is ,

dist (xr , Y) 1≤

Now ,

dist (xr , Y) = dist ( , Y )
𝑥 − 𝑦

0

||𝑥−𝑦
0
||

= dist ( x - y0 , Y)
1

||𝑥−𝑦
0
||

= inf { ||x - y0 - y|| : y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= inf {||x - (y0+ y)|| : y0 + y }
1

||𝑥−𝑦
0
|| ∈ 𝑌

= dist (x , Y)
1

||𝑥−𝑦
0
||

> dist (x , Y)    by (1)
𝑟

𝑑𝑖𝑠𝑡 (𝑥 , 𝑌)

dist (xr , Y) > r⇒

That is ,

r < dist (xr , Y) 1≤
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CONCLUSION

This project discusses the concept of normed linear space that is fundamental to
functional analysis . A normed linear space is a vector space over a real or complex
numbers ,on which the norm is defined . A norm is a formalization and generalization to
real vector spaces of the intuitive notion of “length” in real world

In this project , the concept of a norm on a linear space is introduced and thus
illustrated . It mostly includes the properties of normed linear spaces and different proofs
related to the topic.
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INTRODUCTION 

 

 In recent years, Graph Theory has established itself as an important 

mathematical tool in a wide variety of subjects, ranging from Operational 

Research and Chemistry to Genetics and Linguistics, and from Electrical 

Engineering and Geography to Sociology and Architecture. At the same time, it 

has also emerged as a worthwhile mathematical discipline in its own right. 

 A great mathematician, Euler become the Father of Graph Theory, when 

in 1736, he solved a famous unsolved problem of his days, called Konigsberg 

Bridge Problem. This is today, called as the First Problem of the Graph theory. 

This problem leads to the concept of the planar graph as well as Eulerian Graphs, 

while planar graphs were introduced for practical reasons, they pose many 

remarkable mathematical properties. In 1936, the psychologist Lewin used planar 

graphs to represent the life space of an individual. 
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Chapter 1 

BASIC CONCEPTS 

 

Graph 

 A graph is an ordered triple 𝐺 = {𝑉(𝐺), 𝐸(𝐺), 𝐼𝐺} where 𝑉(𝐺) is a non-

empty set, 𝐸(𝐺) is a set disjoint from 𝑉(𝐺) and 𝐼(𝐺) is an incidence map that 

associates each element of 𝐸(𝐺) and unordered pair of elements of 𝑉(𝐺). The 

elements of 𝑉(𝐺) are called vertices (or nodes or points) of 𝐺 and the element 

of 𝐸(𝐺) are called edges or lines of 𝐺. 

Example: 

 

Here  𝑉(𝐺)  =  {𝑣1, 𝑣2, 𝑣3, 𝑣4} 

 𝐸(𝐺)  =  {𝑒1, 𝑒2, 𝑒3, 𝑒4} 

 𝐼𝐺(𝑒1)  =  {𝑣1, 𝑣2} or {𝑣2, 𝑣1} 

 I𝐺(𝑒2)  =  {𝑣2, 𝑣3} or {𝑣3, 𝑣2} 

 𝐼𝐺(𝑒3)  =  {𝑣3, 𝑣4} or {𝑣4, 𝑣3} 

 𝐼𝐺(𝑒4)  =  {𝑣4, 𝑣1} or {𝑣1, 𝑣4} 

Multiple edges 

A set of two or more edges of a graph 𝐺 is called multiple edges or parallel 

edges if they have the same end vertices. 
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Loop 

 An edge for which the two end vertices are same is called a loop. 

 

Here {𝑒1, 𝑒2, 𝑒3, 𝑒4} form the parallel edges. 

𝑒7 is the Loop. 

Simple Graph 

 A graph is simple if it has no loops and no multiple edges. 

 

Finite & Infinite Graphs 

 A graph is called finite if both 𝑉(𝐺) & 𝐸(𝐺) are finite. A graph that is not 

finite is called infinite graph. 

 Adjacent Vertices 

 Two vertices 𝑢 and 𝑣 are said to be adjacent vertices if and only if there is 

an edge with 𝑢 and 𝑣 as its end vertices. 
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Adjacent Edges 

 Two distinct edges are said to be adjacent edges if and only if they have a 

continuous end vertex. 

Complete Graph 

 A simple graph 𝐺 is said to be complete if every pair of distinct vertices of 

𝐺 are adjacent in 𝐺. A complete graph with n vertices is denoted by 𝐾𝑛. 

 

Bipartite Graph 

 A graph is bipartite if its vertex set can be partitioned into two non-empty 

subsets 𝑋 and 𝑌 such that each edge of 𝐺 has one end in 𝑋 and the other in 𝑌. The 

pair (𝑋, 𝑌) is called a bipartition of the bipartite graph 𝐺. The bipartite graph 𝐺 

with bipartition (𝑋, 𝑌) denoted by 𝐺 (𝑋, 𝑌). 
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Here  𝑉(𝐺)  =  {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} 

The Bipartition is  

 𝑋 =  {𝑣1, 𝑣2, 𝑣3} 

 𝑌 =  {𝑣4, 𝑣5, 𝑣6, 𝑣7} 

Complete Bipartite Graph 

 A simple bipartite graph 𝐺 (𝑋, 𝑌) is complete if each vertex 𝑋 is adjacent 

to all the vertices of 𝑌. 

 

Here  𝑋 =  {𝑣1, 𝑣2, 𝑣3} 

 𝑌 =  {𝑣4, 𝑣5} 

Subgraph 

A graph 𝐻 is called subgraph of 𝐺 if 𝑉(𝐻) ⊆ 𝑉(𝐺), 𝐸(𝐻) ⊆ 𝐸(𝐺) and IH 

is the restriction of 𝐼𝐺  to 𝐸(𝐻) [ie, 𝐼𝐻(𝑒) = 𝐼𝐺(𝑒) whenever 𝑒 ∈ 𝐸(𝐻). 
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Degrees of Vertices 

 The number of edges incident with vertex 𝑉 is called degree of a vertex 

or valency of a vertex and it is denoted by 𝑑(𝑣). 

Isomorphism of Graph 

 A graph isomorphism from a graph 𝐺 to a graph 𝐻 is a pair (𝜙, 𝜃), where 

𝜙 ∶ 𝑉(𝐺) → 𝑉(𝐻) and 𝜃 ∶ 𝐸(𝐺) → 𝐸(𝐻) are bijection with a property that 

𝐼𝐺(𝑒) = {𝑢, 𝑣} and 𝐼𝐻(𝜃(𝑒)) = {𝜙(𝑢), 𝜙(𝑣)}. 

Walk 

 A walk in a graph 𝐺 is an alternative sequence 𝑊 =

𝑣0𝑣1𝑒1𝑣2𝑒2 … 𝑣𝑛𝑒𝑛 vertices and edges, beginning and ending with vertices where  

𝑣0 is the origin and 𝑣𝑛 is the terminus of 𝑊. 

 

𝑊 = 𝑣6𝑒8𝑣1𝑒1𝑣2𝑒2𝑣3𝑒3𝑣2𝑒1𝑣1 
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Closed Walk 

 A walk to begin and ends at the same vertex is called a closed walk. That 

is, the walk 𝑊 is closed if 𝑣0 = 𝑣𝑛. 

Open Walk 

 If the origin of the walk and terminus of the walk are different vertices, 

then it is called an open walk. 

Trail 

A walk is called a trail if all the edges in the walk are distinct. 

Path 

 A walk is called a path if all the vertices are distinct. 

Example: 

 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒6𝑣1 → A trail 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒3𝑣3 → A path 

𝑣0𝑒1𝑣1𝑒2𝑣2𝑒3𝑣3𝑒5𝑣1 → A trail, but not a path 

Euler’s Theorem 

 The sum of the degrees of the vertices of a graph is equal to the twice the 

number of edges. 

ie: ∑ 𝑑(𝑣𝑖) = 2𝑚𝑛
𝑖=1  
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Isomorphic Graph 

 𝐼𝐻(𝜃(𝑒)) = {𝜙(𝑢), 𝜙(𝑣)} 

A graph  𝐺1 = (𝑉1, 𝐸1) is said to be isomorphic to graph 𝐺2 = (𝑉2, 𝐸2) if 

there is a one-to-one correspondence between the edge sets 𝐸1 and 𝐸2 in such a 

way that if 𝑒1 is an edge with end vertices 𝑢1 and 𝑣1  in 𝐺1 then the corresponding 

edge 𝑒2 in 𝐺2 has its end vertices 𝑢2 and 𝑣2 in 𝐺2. This correspondence is called 

a graph isomorphism. 

Example: 

 𝐺 =    

 𝐻 =   

 

 

 

ie: G and H are isomorphic. 

Components 

 A connected component of a graph is a maximal connected subgraph. The 

term is also used for maximal subgraph or subset of a graph 's vertices that have 

some higher order of connectivity, including bi-connected components, tri-

connected components and strongly connected components. 

Tree 

 A connected graph without cycles is called a tree. 

Vertex Cut 

 Let 𝐺 be a connected graph. The set 𝑉՛ subset of 𝑉(𝐺) is called a Vertex 

cut of 𝐺, if 𝐺 − 𝑉՛ is a disconnected graph. 
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Cut Vertex 

 If 𝑉՛ = {𝑣} is a Vertex cut of the connected Graph 𝐺, then the vertex 𝒗 is 

called a Cut vertex. 

Edge Cut 

 Let 𝐺 be a non-trivial connected graph with vertex set 𝑉 and let 𝑆 be a non-

empty subset of 𝑉 and 𝑆̅ = 𝑉 − 𝑆. Let 𝐸՛ = [𝑆, 𝑆̅] denote the set of all edges of 𝐺 

that have one end vertex is 𝑆 and the other is 𝑆̅. Then 𝐺 − 𝐸՛ is a disconnected 

graph and 𝐸՛ = [𝑆, 𝑆̅] is called an edge cut of 𝐺. 

Cut Edge 

 If 𝐸՛ = {𝑒} is an edge cut of 𝐺 then 𝑒 is called a cut edge of 𝐺. 

Block 

 A block is a Connected graph without any cut vertices. 

Eg:  

  

Graph 𝐺 Blocks of 𝐺 
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Chapter 2 

PLANAR GRAPHS 

 

Plane Graph 

 A plane graph is a graph drawn in the plane, such a way that any pair of 

edges meet only at their end vertices.  

Example: 

 

Planar Graph 

 A planar graph is a graph which is isomorphic to a plane graph, ie: it can 

be drawn as a plane graph. 

A plane graph is a graph that can be drawn in the plane without any edge crossing. 
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Example of Planar graph: 

 

Planar Representation 

 The pictorial representation of a planar graph as a plane graph is called a 

planar representation. 

Eg: Is Q3 shown below, planar? 

 

The graph Q3 

Planar representation of Q3 is: 
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Jordan Curve 

 A Jordan Curve in the plane is a continuous non-self-intersecting curve 

where Origin and Terminals coincide. 

Example: 

 

Jordan Curves 

 

Non-Jordan Curves 

Remark 

 If J is a Jordan Curve in the plane, then the part of the plane enclosed by J 

is called interior of J and is denoted by ‘int J’. We exclude from ‘int J’ the points 

actually lying on J. Similarly, the part of the plane lying outside J is called the 

exterior of J and is denoted by ‘ext J’. 

Example: 

 

Arc connecting point 𝑥 in int J with point 𝑦 in ext J. 
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Theorem 

 Let J be a Jordan Curve, if 𝑥 is a point in int J and 𝑦 is a point in ext J then 

any line joining 𝑥 to 𝑦 must meet J at some point, ie: must cross J. this is called 

Jordan Curve Theorem. 

Boundary 

 The set of edges that bound a region is called its boundary. 

Definition 

 A graph which is not planar is known as non-planar graph or a graph that 

cannot be drawn in the plane without any edge crossing is known as non-planar 

graph. 

 

 

Theorem 

K5  is nonplanar: 

 Every drawing of the complex graph K5 in the plane (or sphere) contains 

at least one edge crossing. 

Proof: 

 Label the vertices 0, 1, 2, 3, 4. By the Jordan Curve theorem any drawing of the 

cycle (1, 2, 3, 4, 1) separates the plane into two regions. Consider the region with 



14 
 

vertex 0 in its interior as the ‘inside’ of the circle. By the Jordan Curve theorem, 

the edges joining vertex 0 to each of its vertices 1, 2, 3 and 4 must also lie entirely 

inside the cycle, as illustrated below. 

 

Drawing most of the K5 in the plane 

Moreover, each of the 3-cycles {0, 1, 2, 0}, {0, 2, 3, 0}, {0, 3, 4, 0} and {0, 4, 1, 0} 

also separates the plane and hence the edges (2, 4) must also lie to the exterior of 

the cycle {1, 2, 3, 4} as shown. It follows that the cycle formed by edges (2, 4), 

(4, 0) and (0, 2) separates the vertices 1 and 3, again by Jordan Curve theorem. 

Thus, it is impossible to draw edge (1, 3) without crossing an edge of that cycle. 

So, it is proven that the drawing of the K5 in the plane contains at least one edge-

crossing.  

Theorem 

 K33 is nonplanar: 

 Every drawing of the complete bipartite graph K33 in the plane (or sphere) 

contains at least one edge crossing. 

Proof: 

 Label the vertices of one partite set 0, 2, 4 and of the order 1, 3, 5. By the 

Jordan Curve theorem, cycle {2, 3, 4, 5, 2} separates the plane into two regions, 



15 
 

and as in the previous proof (K5), we regard the region containing the vertex 0 as 

the ‘inside’ of the cycle. By the Jordan Curve theorem, the edges joining vertex 

0 to each of the vertices 3 and 5 lie entirely inside that cycle, and each of the cycle 

{0, 3, 2, 5, 0} and {0, 3. 4, 5, 0} separates the plane, as illustrated below. 

 

Drawing most of the K33 in the plane 

 Thus, there are 3 regions: the exterior of cycles {2, 3, 4, 5, 2} and the inside 

of each of the other two cycles. It follows that no matter which region contains 

vertex 1, there must be some even numbered vertex that is not in that region, and 

hence the edge from vertex 1 to that even-numbered vertex would have to cross 

some cycle edge. 

Corollary 

 Subgraph of a planar graph is planar. 

Definition 

 A plane graph partitions the plane into number of regions called faces.  

Let G be plane graph. If x is a point on the plane which is not in G, ie: 𝑥 is not a 

vertex of G or a point on any edge of G, then we define the faces of G containing 

𝑥 to be the set of all points on the plane which can be reached from 𝑥 by a line 

which does not cross any edge of G or go through any vertex of G.  
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The number of faces of a plane graph G denoted by 𝑓(𝑎) or simply 𝑓.  

Each plane graph has exactly one unbounded face called the exterior face. 

 

Here 𝑓(𝐺)  =  4  

Degree of faces 

 The degree 𝑑(𝑓) of a face 𝑓 is the number of edges with which it is 

incident, that is the number of edges in the boundary of a face. 

Cut edge being counted twice. 

Eg:  

 

Theorem 

 A graph is planar if and only if each of its blocks is planar. 

Proof: 

 If G is planar, then each of its blocks is planar since a subgraph of planar 

graph is planar.  

 Conversely, suppose that each block of G is planar. We now use induction 

on the number of blocks of G to prove the result. Without loss of generality, we 

𝑑(𝑓2) = 3 

𝑑(𝑓1) = 4 

𝑑(𝑓3) = 3 
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assume that G is connected. If G has only one block, then G itself is a block, and 

hence G is planar. 

 Now suppose G has k planar blocks and that the result has been proved for 

all connected graph having (k-1) planar blocks. Choose any end block B0 of G 

and delete from G all the vertices of B0 except the unique cut vertex, say 𝑣0 of G 

in B0. The resulting connected graph G` of G contains (k-1) planar blocks. Hence, 

by the induction hypothesis G` is planar. Let G~` be  plane embedded of G` such 

that 𝑣0 belongs to the boundary of unbounded face, say 𝑓 `. Let B0
~ be a plane 

embedding of B0 in 𝑓 `, so that 𝑣0 is in the exterior face of B0
~. Then G~` and B0

~ 

is a plane embedding of G. 
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Chapter 3 

EULER’S FORMULA 

 

Theorems  

Euler Formula: 

 For a connected plain graph 𝐺, 𝑛 − 𝑚 + 𝑓 = 2 where 𝑛, 𝑚, and 𝑓 denote 

the number of vertices, edges and faces of 𝐺 respectively. 

Proof: 

We apply the induction on 𝑓. 

If 𝑓 = 1 the 𝐺 is a tree and 𝑚 = 𝑛 − 1. 

Hence 𝑛 − 𝑚 + 𝑓 = 2 and suppose that 𝐺 has 𝑓 faces. 

Since 𝑓 ≥ 2, 𝐺 is not a tree and hence contains a cycle 𝐶. Let 𝑒 be an edge of 𝐶. 

Then 𝑒 belongs to exactly 2 faces, say 𝑓1and 𝑓2 and the deletion of 𝑒 from 𝐺 

results in the formation of a single face from 𝑓1and 𝑓2. Also, since 𝑒 is not a cut 

edge of 𝐺. 𝐺 − 𝑒 is connected.  

Further the number of faces of 𝐺 − 𝑒 is 𝑓 − 1, number of edges in 𝐺 − 𝑒 is 𝑚 −

1 and number of vertices in 𝐺 − 𝑒 is 𝑛. So, applying induction to 𝐺 − 𝑒, we get 

𝑛 − (𝑚 − 1) + (𝑓 − 1) = 2 and this implies that 𝑛 − 𝑚 + 𝑓 = 2. This 

completes the proof of theorem. 

Corollary 1 

 All plane embedding of a planar graph have the same number of faces.  
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Proof: 

Since 𝑓 = 𝑚 − 𝑛 + 2 the number of faces depends only on 𝑛 and 𝑚 and not on 

the particular embedding. 

Corollary 2 

 If 𝐺 is a simple planar graph with at least 3 vertices, then 𝑚 ≤ 3𝑛 − 6. 

Proof: 

Without the generality we can assume that 𝐺 is a simple connected plane graph. 

Since 𝐺 is simple and 𝑛 ≥ 3, each face of 𝐺 has degree at least 3. Hence if 𝑓 

denote the set of faces of 𝐺 ∑ 𝑑(𝑓)𝑓𝜖𝐹 ≥ 3𝑓. But ∑ 𝑑(𝑓)𝑓𝜖𝐹 = 2𝑚. 

Consequently 2𝑚 ≥ 3𝑓 so that 𝑓 ≤
2𝑚

3
. 

By the Euler formula 𝑚 = 𝑛 + 𝑓 − 2 now 𝑓 ≤
2𝑚

3
 implies m ≤ n + (

2m

3
) − 2. 

This gives. 𝑚 ≤ 3𝑛 − 6. 
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Chapter 4 

DUAL OF A PLANE GRAPH 

 

Definition 

 Let G be a plane graph. One can form out of G a new graph H in the 

following way corresponding to each face f(g), take the vertex f* and 

corresponding to each edge e(g), take an edge e*. Then edge e* joins vertices f* 

and g* in H iff edge e is common to the boundaries of faces f and g in G. The 

graph H is then called dual of G. 

Example: 

 

Plane graph and its Dual 
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CONCLUSION 

 

 In this project we discussed the topic planar graph in graph theory.  

We discussed about Euler formula and verified that some graphs are planar, and 

some are non-planar. A related important property of planar graphs, maps and 

triangulations is that they can be enumerated very nicely.  

We also discussed about duality of a graph.in mathematical discipline of graph 

theory, the dual graph of a plane graph G is a graph that has a vertex of each face 

of G .it has many applications in mathematical and computational study.  

In fact, graph theory is being used in our so many routine activities. For eg; using 

GPS or google maps to determine a route based on used settings. 
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