Reg. No. : \qquad
Name : \qquad

IV Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023
 (2019 Admission Onwards)

 COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

 COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04 MAT-BCA : Mathematics for BCA - IV

Time : 3 Hours

Max. Marks : 40

PART - A

Answer any four questions. Each question carries 1 mark :

1. What is meant by an exhaustive event?
2. Find ${ }^{5} \mathrm{P}_{3}$.
3. What is meant by a linear programming problem?
4. Define a path in a network.
5. What is meant by an initial value problem?

PART - B

Answer any 7 questions. Each question carries 2 marks :
6. What is the chance that a leap year selected at random will contain 53 Sundays ?
7. In how many ways can one make a first, second, third and fourth choice among 12 firms leasing construction equipment?
8. State addition law of probability.
9. What are the three components of an LPP ?
10. Write the canonical form of
$\max Z=2 x_{1}+3 x_{2}$
sub to $2 x_{1}-4 x_{2} \leq 4$
$x_{1}+x_{2} \geq 3$
$x_{1}+7 x_{2} \leq 7$
$x_{1}, x_{2} \geq 0$.
11. State fundamental theorem on Linear programming.
12. Explain a directed network. Give an example,
13. What is meant by link capacits in network analysis?
14. Explain the Trapezoidal rule.
15. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{\mathrm{x}} \mathrm{dx}$ using Simpson's rule,

PABT - C

Answer any 4 questions. Each question carries 3 marks :
16. A problem is given to three students A, B and C whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ and $-\frac{1}{4}$ respectively. What is the probability that the problem will be solved?
17. Explain the characteristics of general LP form.
18. Use graphical method to solve that LPP

Maximize $\mathrm{z}=4 \mathrm{x}_{1}+3 \mathrm{x}_{2}$
Sub to $2 x_{1}+x_{2} \leq 1000$
$x_{1}+x_{2} \leq 800$
$0 \leq x_{1} \leq 400$ and $0 \leq x_{2} \leq 700$.
19. Explain Konigsberg network flow problem.
20. State the characteristics of minimal spanning tree problem.
21. From the Taylor series for $y(x)$, find $y(0.1)$ correct to four decimal places if $y(x)$ satisfies $y^{\prime}=x-y^{2}$ and $y(0)=1$.
22. Determine the value of y when $x=0.1$, given that $y(0)=1$ and $y^{\prime}=x^{2}+y$.

PART - D

Answer any 2 questions. Each question carries 5 marks :
23. A committee consists of 9 students two of which are from $1^{\text {st }}$ year, three from $2^{\text {nd }}$ year and four from $3^{\text {rd }}$ year. Three students are to be removed at random. What is the chance that
i) the three students belongs to different classes
ii) two belongs to the same class and third to the different classes,
iii) the three belong to the same class?
24. Use simplex method to solve the LPP

Maximize $z=4 x_{1}+10 x_{2}$
Sub to $2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 50$
$2 x_{1}+5 x_{2} \leq 100$
$2 x_{1}+3 x_{2} \leq 90$
$x_{1}, x_{2} \geq 0$.
25. Use Dijkstra's algorithm to determine the shortest route and hence the shortest distance from city 1 to city 7 . (Given the network in figure -1)

Figure 1
26. Using Runge-Kutta method of both second order and fourth order formula, find_ $y(0.1)$ and $y(0.2)$ correct to four decimal places, given $\frac{d y}{d x}=y-x$ where
$y(0)=2, h=0.1$.

