K23U 1148

Reg. No.: \qquad

Name: \qquad

IV Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2023

 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN STATISTICS 4C04STA (G \& P) : Inferential StatisticsTime : 3 Hours
Max. Marks : 40
Instruction: Use of Calculators and Statistical tables are permitted.

> PART-A
(Short Answer)
Answer all 6 questions.
$(6 \times 1=6)$

1. Define statistic.
2. Define an efficient estimate.
3. What do you mean by stâtistical inference?
4. State the 95% confidence interval for the mean of a normal distribution, when σ is known.
5. Define the term testing of hypothesis.
6. What do you mean by non-parametric test ?

> PART - B
(Short Essay)
Answer any 6 questions.
7. What is the difference between estimator and estimate?
8. Explain unbiased and sufficiency estimator.
9. Define the two types of errors.
10. Define most powerful test.
11. Distinguish between large sample and smáll sample tests.
12. What is a statistical hypothesis ? Give example.
13. Explain Mann-Whiteney U test.
14. Explain the term ANOVA. Write any two uses of ANOVA.

PART-C

(Essay)

Answer any 4 questions.
($4 \times 3=12$)
15. What do you mean by two-way classification model in ANOVA?
16. Define Consistent estimator. Give an example.
17. Distinguish between point estimation and interval estimation.
18. Obtain 98% confidence interval for the difference of two population proportion.
19. Explain:

1) Simple and composite hýpothesis
2) Size and power of a test.
20. Consider the following 2×2 contingency table :

	A	
B	Male	Female
Educated	7	1
Not Educated	6	8

Apply Chi square test and test at 5% level of significance whether the two attributes A and B are independent ?

PART - D
(Long Essay)
Answer any 2 questions.
($2 \times 5=10$)
21. Two independent random samples each of size 10 from 2 independent normal distributions, $\mathrm{N}\left(\mu_{1}, \sigma_{1}\right)$ and $\mathrm{N}\left(\mu_{2}, \sigma_{2}\right)$ yield $\overline{\mathrm{x}}_{1}=4.8, \mathrm{~S}_{1}^{2}=8.6$ and $\overline{\mathrm{x}}_{2}=5.6$, $S_{2}^{2}=7.9$. Find 95% confidence interval for $\mu_{1}-\mu_{2}$.
22. Before an increase in excise duty on tea 400 peoples out of a sample of 500 persons were found to be tea drinkers. After an increase in excise duty 400 people were tea drinkers in a sample of 600 people. Examine whether there is any significant decrease in consumption of tea because of the increase in excise duty. $(\alpha=0.05)$.
23. Explain the Chi-square test of goodness of fit.
24. Set a table of analysis of variance for the following data :

	Variety			
Plot	A	B	C	D
$\mathbf{1}$	200	230	250	300
$\mathbf{2}$	190	270	300	270
$\mathbf{3}$	240	150	145	180

Test whether varieties are different.

