Reg. No. : \qquad
Name : \qquad

IV Semester M.Sc. Degree (CBSS - Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS
 MAT4C16 : Differential Geometry

Time : 3 Hours

Max. Marks : 80

Answer four questions from this Part. Each question carries 4 marks.

1. Define the Gradient Vector field. Find the gradient vector field of the function $f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}^{2}, x_{1}, x_{2} \in R$.
2. Sketch the graph of the function $f: R^{2} \rightarrow R$ defined by $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$.
3. Define the term geodesic. Prove that geodesics have constant speed.
4. Compute $\nabla_{v} f$ where $f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-3 x_{1} x_{2}^{2}, v=(1,0,-1,1)$.
5. Prove that $\beta(t)=(\sin t,-\cos t)$ is a reparametrization of $\alpha(t)=(\cos t, \sin t)$, $0 \leq t \leq 2 \pi$.
6. With usual notations, Prove that $\mathrm{d}(\mathrm{f}+\mathrm{g})=\mathrm{df}+\mathrm{dg}$.

PART - B
Answer four questions from this Part without omitting any Unit, each question carries 16 marks.
Unit - I
7. a) Find the integral curve through $(1,1)$ of the vector field

$$
X\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2},-x_{2},-x_{1}\right) .
$$

b) Let $a, b, c \in R$ such that $a c-b^{2}>0$. Show that the maximum and minimum values of the function $g\left(x_{1}, x_{2}\right)=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$ on the circle $x_{1}^{2}+x_{2}^{2}$ $=1$ are λ_{1}, λ_{2} where λ_{1}, λ_{2} are the eigenvalues of the matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$.
c) State and Prove the Lagrange Multiplier Theorem.
8. a) Prove the following : Let S be an n surface in $R^{n+1}, S=f^{-1}(c)$ where $f: U \rightarrow R$ is such that $\nabla_{q} \neq 0$ for all $q \in S$. Suppose $g: U \rightarrow R$ is a smooth function and $p \in S$ is an extreme point of g on S. Then there exist a real number λ such that $\nabla g(p)=\lambda \nabla f(p)$.
b) Sketch the cylinder $f^{-1}(0)$ where $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-x_{2}^{2}$.
c) Find the orientations on the n-sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\cdots+x_{n+1}^{2}=1$.
9. a) Sketch the level curves $(c=-1,0,1)$ and graph of the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$.
b) i) Verify that a cylinder over an $n-1$ surface in R^{n} is an n-surface in R^{n+1}.
ii) Show that a surface of revolution is a 2 -surface.
c) Show that graph of any function $\mathrm{f}: \mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{R}$ is a level set for some function $F: R^{n+1} \rightarrow R$.

Unit - II

10. a) Describe the spherical image of the 2 -surface $f^{-1}(1)$, oriented by $\frac{-\nabla f}{\|\nabla f\|}$ where $f\left(x_{1}, x_{2}, x_{3}\right)=x_{2}^{2}+x_{3}^{2}$.
b) Let S denote the cylinder $x_{1}^{2}+x_{2}^{2}=1$ in R^{3}. Show that α is a geodesic of S if and only if α is of the form $\alpha(t)=(\cos (a t+b), \sin (a t+b), c t+d)$ for some a, b, c, $d \in R$.
11. a) Prove that in an n-plane parallel transport is path independent.
b) Prove that The Weingarton map is self-adjoint:
12. a) Let $\alpha(t)=(x(t), y(t))$ be alocal parametrization of the oriented plane curve C. Show that $\kappa \circ \alpha=x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{2} /\left(x^{\prime 2}+y^{\prime 2} x^{2}\right)^{3 / 2}$.
b) Show that
i) $D_{v}(f X)=\left(\nabla_{v} f\right) X(p)+f(p) D_{v} X$
ii) $\nabla_{v}(X, Y)=\left(D_{v} X\right) \cdot Y(p)+X(p) \cdot\left(D_{v} Y\right)$.
Unit - III
13. a) Prove the following: Let C be a connected oriented plane curve and let $\beta: I \rightarrow C$ be a unit speed global parametrization of C. Then β is either one to one or periodic. Moreover, β is periodic if and only if C is compact.
b) Find the Gaussian curvature of the ellipsoid $x_{1}^{2} / a^{2}+x_{2}^{2} / b^{2}+x_{3}^{2} / c^{2}=1$ oriented by its outward normal.
14. a) Let S be an oriented 2-surface in R^{3} and let $p \in S$. Show that for each $v, w \in S_{p}, L_{p}(v) \times L_{p}(w)=K(p) v \times w$.
b) Derive the formula for Gaussian curvature of an oriented n-surface in R^{n+1}.
15. a) Find the arc length of the curve $\alpha:[0,1] \rightarrow R^{2}$ where $\alpha(t)=\left(t^{2}, t^{3}\right)$.
b) Prove the following : Let S be an n surface in R^{n+1} and let $f: S \rightarrow R^{k}$. Then f is smooth if and only if $f \circ \phi: U \rightarrow B^{k}$ is smooth for each local parametrization $\phi: U \rightarrow S$.
c) Compute $\int_{\alpha}\left(x_{2} d x_{1}+x_{1} d x_{2}\right)$, where $\alpha(t)=(2 \operatorname{cost},-\sin t), 0 \leq t \leq 2 \pi$.
