Reg. No. : \qquad
Name : \qquad

Third Semester M.C.A. Degree (Regular/Suppl./Imp.) Examination, January 2017 (2014 Admn. Onwards) MCA3C15 : THEORY OF COMPUTATION

Time: 3 Hours

Max. Marks : 80
Instructions: 1) Answer any ten questions from Section - A. Each question carries three marks.
2) Answer all questions from Section - B. Each question carries 10 marks.

SECTION - A
Note : Answer any ten questions from the following. Each question carries three marks.

1. a) Define Finite Automata.
b) Construct NFA for $1^{*}(01)^{*}$
c) Generate CFG for $(011+1)^{*}$.
d) Define Regular Expression.
e) Define PDA.
f) State the conditions for a PDA to be deterministic.
g) Define Chomsky Normal form.
h) State pumping lemma for context free languages.
i) What is meant by Turing Machine ?
j) List out the techniques for Turing Machine construction.
k) Define Multitape Turing Machine.
I) Differentiate recursive and non-recursive languages.

SECTION - B

Note : Answer all questions. Each question carriesten marks.
2. a) Design a DFA to accept the following languages.
i) $L=\left\{\omega:|\omega| \bmod 3=0, \omega \in(0+1)^{*}\right\}$

b) Construct an NFA equivalent to the regular expression.

$$
10+(0+11) 0 * 1 .
$$

OR
3. a) Construct a NFA that accept the set of all strings $\{a, b\}$ ending with "aba" as substring and construct DFA.
b) Convert the following NFA to its equivalent DFA.

4. a) Write regular expression for the following languages :
i) $L=\left\{a^{n} b^{m}:(m+n)\right.$ is even $\}$
ii) $L=\left\{a^{2 n} b^{2 m+1}: m \geq 0, n \geq 0\right\}$.
b) Define ambiguous grammar. Prove that the following grammar is ambiguous.
$S \rightarrow$ as bs
$S \rightarrow b s a s$
$S \rightarrow \in$.
OR
5. a) Obtain grammar to generate the language

$$
L=\left\{0^{m} 1^{m} 2^{n} \mid m \geq 1 \text { and } n \geq 0\right\} \text {. }
$$

b) Show that the language

$$
L=\left\{a^{n} b^{n} \mid n \geq 1\right\} \text { is unambiguous. }
$$

6. Find a Greibach normal form grammar equivalent to the following CFG

$$
\mathrm{S} \rightarrow \mathrm{ASB} \mid \mathrm{AB}, \mathrm{~A} \rightarrow \mathrm{a}, \mathrm{~B} \rightarrow \mathrm{~b} .
$$

OR
7. Explain in detail how context free language is accepted by PDA.
8. Show that the context free languages are closed under union, concatenation and Kleen closure.

> OR
9. a) Using pumping lemma, show that the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not a CFL.
b) Discuss in detail about the models of Turing Machines.
10. Show that Lisrecognized by a Turing Machine with a two-way infinite tape if and only if itris recognized by a Turing Machine with a one way infinite tape.

OR
11. Explain post-correspondence problems and decidable and undecidable problems with examples.

