Reg. No. : \qquad
Name: \qquad

VI Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.) Examination, May 2015 CORE COURSE IN MATHEMATICS
 6B12 MAT : Linear Algebra

Time : 3 Hours

Max. Weightage : 30

1. Fill in the blanks :
a) Dimension of \mathbb{C} the set of all complex numbers is \qquad
b) The smallest subspace of a vector space is \qquad
c) In a row reduced echelon matrix, the non-zero leading entry in a row is
d) If T is a linear transformation, then the dimension of null space of T is known as \qquad
Answer any six from the following (Weightage 1 each) :
2. Define subspace of a vector space.
3. Give a basis for \mathbb{R}.
4. By an example, show that union of two subspaces of a vector space need not be - a subspace.
5. Using graphs, solve $2 x+y=3 ; 4 x+2 y=-1$.
6. What do you mean by row echelon form of matrix ? Give an example.
7. State Cayley Hamilton theorem.
8. Check whether the function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined $T(x, y, z)=(x-y, y+z)$ is a linear transformation or not.
9. Prove that range space of a linear transformation from the vector space U to V is a subspace of V .
10. What do you mean by non-singular transformation?
(Weightage 6×1=6)

Answer any seven from the following (Weightage 2 each) :
11. Let P_{n} be the set of all polynomials of degree $\leq n$. Let $V=\left\{p(x) \in P_{n}(x) / p(1)=0\right\}$. Show that V is a vector space with respect to usual addition and scalar multiplication of polynomials.
12. Find k such that $\{(2,-1,3),(3,4,-1),(k, 2,1)\}$ is linearly independent.
13. Show that the equations $x+2 y+z=2,2 x+y-10 z=4,2 x+3 y-z=2$ are consistent and solve them.
14. Find the eigen values and eigen vector corresponding to the smallest eigen value of the matrix
$A=\left[\begin{array}{rrr}2 & 2 & 1 \\ -4 & 8 & 1 \\ -1 & -2 & 0\end{array}\right]$.
15. Prove that for a symmetric matrix any two eigen vectors from different eigen space are orthogonal.
16. Prove that similar matrices have the same characteristic polynomial.
17. Check whether $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ defined by $\mathrm{T}(1,2,2)=(2,3,1), T(0,1,2)=(1,-1,3)$, $\mathrm{T}(3,-4,1)=(1,1,-2)$ and $\mathrm{T}(3,-1,5)=(4,3,2)$ is linear.
18. Let $T: R^{3} \rightarrow R^{3}$ be a linear map defined by $T(x, y, z)=(x-y, 2 y+z, 0)$. Find the null space, range space and check whether T is one-to-one.
19. Let U and V be two finite dimensional vector spaces and $T: U \rightarrow V$ be a linear map. If $\operatorname{dim} U=\operatorname{dim} V=n$, then prove that T is one-one if and only if T is onto.
20. Find the rank of the matrix $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 3 & 1 \\ -2 & -3 & -1\end{array}\right]$.

Answer any three from the following (Weightage 3 eạch) :
21. If U and V are subspaces of a finite dimensional vector space, prove that $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)$.
22. Using row elementary transformations, find the inverse of the matrix

$$
\left[\begin{array}{rrr}
3 & -2 & 1 \\
1 & 3 & -2 \\
2 & -1 & 3
\end{array}\right] .
$$

23. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -2 & 2\end{array}\right]$.
24. Diagonalise the matrix $A=\left[\begin{array}{rrr}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$.
25. State and prove rank-nullity theorem.
(Weightage : $3 \times 3=9$)
