Reg. No. : \qquad
Name : \qquad

VI Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.)
 Examination, May 2015
 CORE COURSE IN MATHEMATICS
 6B11 MAT : Complex Analysis

Time : 3 Hours
Max. Weightage : 30

1. Fill in the blanks (Weightage 1):
a) If $z=x+i y$, then $|z|=$ \qquad
b) If $f(z)=u(r, \theta)+i v(r, \theta)$, then the polar form of the Cauchy-Riemann equations are \qquad
c) The simularities of the functions $f(z)=(z+1) / z^{3}\left(z^{2}+1\right)$ are \qquad
d) If $f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n}$, then residue of $f(z)$ at $z=a$ is \qquad
Answer any 6 questions from the following 9 questions. (Weightage one each):
2. If $z=x+i y$ is any non-zero complex number, obtain z^{-1} and verify that $z z^{-1}=1$.
3. Examine whether $f(z)=z^{2}$ satisfy the Cauchy-Riemann equations.
4. If $f^{\prime}(z)=0$ everywhere in a domain D, show that $f(z)$ is a constant throughout D.
5. Show that $u(x, y)=\sinh x$ sinhy is harmonic.
6. Find the values of z such that $e^{z}=-1$.
7. Evaluate $\int_{C}\left(e^{2 z} /(z+1)\right)^{d z}$, where C is the circle $|z|=2$.
8. Prove that $\operatorname{Sin}^{-1} z=-i \log \left[i z+\left(1-z^{2}\right)^{1 / 2}\right]$.
9. State the Laurent's theorem.
10. Find the residue of $f(z)=z /(z-1)(z+1)^{2}$ at the poles.

Answer any seven questions from the following 10 questions (weightage 2 each).
11. If z_{1} and z_{2} are any two complex numbers, show that $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
12. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is continuous at a point $z_{0} \in \mathbb{C}$ and $f\left(z_{0}\right) \neq 0$, show that $f(z) \neq 0$ throughout some neighbourhood of z_{0}.
13. Prove that $\frac{d}{d t}\left(e^{z_{0} t}\right)=z_{0} e^{z_{0} t}$, where $z_{0}=x_{0}+i y_{0}$.
14. Using De-Moivre's theorem, express $\cos 3 \theta$ in powers of $\cos \theta$.
15. Find $\int_{C} \bar{z} d z$, where C is the right hand half of the circle $|z|=2$.
16. With the aid of remainders, show that $\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$, where $|z|<1$.
17. If a function $f(z)$ is analysis inside and on a positively oriented circle C with centre at z_{0} and radius R, show that $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}, n=1,2, \ldots$, where M is a positive real number such that $|f(z)| \leq M$.
18. If the function $f(z)$ has a pole of order m at z_{0}, show that $f(z)=\varphi(z) /\left(z-z_{0}\right)^{m}$, where $\varphi(z)$ is analytic and non-zero at z_{0}.
19. Show that $z=\pi_{1} / 2$ is a simple pole of $f(z)=\frac{\tanh z}{z^{2}}$ and find the residue of $f(z)$ at $z=\pi_{i} / 2$.
20. If two functions p and q are analytic at a point $z_{0}, p\left(z_{0}\right) \neq 0, q\left(z_{0}\right)=0$ and $q^{\prime}\left(z_{0}\right) \neq 0$, show that z_{0} is a simple pole of the quotient $p(z) / q(z)$ and also prove that $\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}$.

Answer any three questions from the following five questions (weightage 3 each).
21. Prove that the square roots of $\sqrt{3}+i$ are $\pm \frac{1}{\sqrt{2}}(\sqrt{2+\sqrt{3}}+i \sqrt{2-\sqrt{3}})$.
22. If $f(z)=u(x, y)+i v(x, y)$ and $f^{\prime}(z)$ exists at a point $z_{0}=x_{0}+i y_{0}$, then show that u and v satisfy the Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=v_{x}$ at (x_{0}, y_{0}).
23. If $f(z)$ is analytic everywhere inside and on a simple closed curve C taken is positive sense, prove that $f^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{(s-z)^{2}} d s$, where z is interior to C.
24. State and prove Cauchy's integral formula.
25. If $z_{n}=x_{n}+i y_{n}(n=1,2,3, \ldots$.$) and z=x+i y$, then show that $\lim _{n \rightarrow \infty} z_{n}=z$ if and only if $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$.

