

M 8160

Reg. No. :	
	8. Let $g_i(x) = x^{ij}$ for $x \in [0, 1] = A$ and $g_i(x) \in [x]$.
Name :	Prove that the sequence (q.,) does not converge

VI Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.) Examination, May 2015 CORE COURSE IN MATHEMATICS 6B10 MAT : Analysis and Topology

Time: 3 Hours

Max. Weightage : 30

- 1. Fill in the blanks :
 - a) The Riemann sum of a function $f : [a, b] \rightarrow R$ corresponding to the partition $P = \{x_0, x_1, \dots, x_n\}$ is _____
 - b) The value of $\int_{1}^{4} \frac{\sin \sqrt{t}}{\sqrt{t}} dt$ is _____
 - c) $\lim \frac{\sin(nx+n)}{n} =$ _____for $x \in \mathbb{R}$.
 - d) Let X be a matrix space and let $A \subseteq X$. Then _____ = {x : x \in A and S_r(x) $\subseteq A$ for some r}. (Weightage 1)

Answer any six from the following. (Weightage 1 each) :

- 2. State Cauchy's criterion for a function f to be Riemann integrable.
- 3. Define "Pointwise convergence" of a sequence of functions. Give an example.
- 4. State Dini's Theorem.
- 5. Define the radius of convergence of the power series $\sum a_n x^n$. Determine the

radius of convergence for the series $\sum \frac{x^n}{n^2}$.

- 6. Let $g_n(x) = x^n$ for $x \in [0, 1] = A$ and $n \in N$ and let g(x) = 0 for $0 \le x \le 1$ and g(1) = 1. Prove that the sequence $\{g_n\}$ does not converge uniformly on A.
- 7. Define complete metric space. Prove that (0, 1) is not complete with Euclidean metric.
- 8. Let X be any metric space. Prove that any intersection of open sets in X need not be open.
- 9. Define homeomorphism between two topological spaces. Give an example.
- 10. When a subset A of X is said to be nowhere dense in X ? Give an (Weightage 6×1=6)

Answer any seven from the following. (Weightage 2 each) :

- 11. If $f : [a, b] \rightarrow R$ is continuous on [a, b], then prove that $f \in R[a, b]$.
- 12. If f, $g \in R$ [a, b] then prove that f $g \in R$ [a, b].
- 13. Let (f_n) be a sequence of continuous functions on a set $A \subseteq R$ and suppose that (f_n) converges uniformly on A to a function $f : A \rightarrow R$. Then prove that f is continuous on A.

14. Let $f_n : [0, 1] \to R$ be defined for $n \ge 2$ by $f_n(x) = \begin{cases} n^2 x & \text{for } 0 \le x \le \frac{1}{n} \\ -n^2 \left(x - \frac{2}{n}\right) & \text{for } \frac{1}{n} \le x \le \frac{2}{n} \\ 0 & \text{for } \frac{2}{n} \le x \le 1 \end{cases}$

Show that $\int_0^1 f(x) dx \neq \lim \int_0^1 f_n(x) dx$.

15. Prove that sin $x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ for all $x \in \mathbb{R}$.

M 8160

16. Let X be an arbitrary non-empty set and defined by

 $d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$

Prove that d is a metric on X.

- 17. In any metric space X, prove that each open sphere is an open set.
- Let X be a metric space. Prove that a subset F of X is closed if and only if its complement F' is open.
- 19. Let X be a topological space and A be a subset of X. Then prove that $\overline{A} = A \cup D(A)$.
- 20. Let X be a topological space and A an arbitrary subset of X. Then prove that $\overline{A} = \{x : each neighbourhood of x intersects A\}.$ (Weightage 7x2=14)

Answer any three from the following. (Weightage 3 each) :

- 21. State and prove Cantor's Intersection Theorem.
- 22. State and prove Kuratowski closure axioms on topological space.
- 23. If R is the radius of convergence of the power series $\sum a_n x^n$, then prove that the series converges absolutely if |x| < R and is divergent if |x| > R.
- 24. Let (f_n) be a sequence of functions in R[a, b] and suppose that (f_n) converges uniformly on [a, b] to f. Then prove that $f \in R[a, b]$.
- 25. State and prove Fundamental Theorem of Calculus (first form).

(Weightage 3x3=9)