Reg. No. : \qquad
Name : \qquad

VI Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.) Examination, May 2014 CORE COURSE IN MATHEMATICS 6B14 MAT : Operation Research (Elective - 3)

Time: 3 Hours
Max. Weightage: 30
Instruction : Answer to all questions.

1. Fill in the blanks :
a) Let S be a non-empty convex subset of R^{n}. Then a function $f(x)$ on S is said to be convex if for any two vectors x_{1} and x_{2} in S \qquad
b) Let the constraints of a general L.P.P. be $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ for $i=1,2, \ldots . k$. Then the non-negative variables x_{n+i} which satisfy $\sum_{j=1}^{n} a_{i j} x_{j}+x_{n+i}=b_{i}$ for $i=1,2, \ldots k$ are called \qquad
c) A necessary and sufficient condition for the existence of a feasible solution to the general transportation problem is that \qquad
d) A game is said to be fair if \qquad
Answer any 6 questions from the following (Weightage 1 each) :
2. For a L.P.P. define :
a) Feasible solution
b) Surplus variable.
3. Express $Q(x)=x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}-5 x_{2} x_{3}$ in the form $X^{\top} A X$.
4. How will you recognise optimality in the simplex method?
5. Define the term "loop" associated with transportation problem.
6. Give the mathematical formulation of an assignment problem.
7. Define the following in game theory :
a) Saddle point
b) Optimum strategy.
P.T.O.
8. Define:
i) Total elapsed time
ii) Idle time on a machine.
9. Explain "Principle of dominance" in game theory.
10. State the "Reduction Theorem" in a assignment problem.
(W: 6×1=6)
Answer any 7 from the following (Weightage 2 each) :
11. Rewrite in standard form the following linear programming problem :

Minimize $z=2 x_{1}+x_{2}+4 x_{3}$ subject to the constraints
$-2 x_{1}+4 x_{2} \leq 4, x_{1}+2 x_{2}+x_{3} \geq 5,2 x_{1}+3 x_{3} \leq 2$
$x_{1}, x_{2} \geq 0$ and x_{3} unrestricted in sign.
12. Show that the set $S=\left\{\left(x_{1}, x_{2}\right): 3 x_{1}^{2}+2 x^{2} \leq 6\right\}$ is convex.
13. Solve graphically the following L.P.P.

Maximize $z=8 x_{1}+6 x_{2}$ subject to
$4 x_{1}+2 x_{2} \leq 60$
$2 x_{1}+4 x_{2} \leq 48$
$x_{1} \geq 0$ and $x_{2} \geq 0$.
14. Explain different steps involved in Simplex Algorithm.
15. Write down the dual of the following problem :

Max. : $z=4 x_{1}+2 x_{2}$ subject to
$-x_{1}-x_{2} \leq-3$
$-x_{1}+x_{2} \geq-2 ; x_{1}, x_{2} \geq 0$.
16. Find the initial feasible solution to the transportation problem given below by North West Corner Rule.

Destination

Origins $\quad D_{1} \quad D_{2} \quad D_{3}$ Supply

| \mathbf{O}_{1}
 \mathbf{O}_{2}
 \mathbf{O}_{3}
 \mathbf{O}_{4}2 7 4
 3 1
 1 6 7 | 5
 8
 7 | | |
| :---: | :---: | :---: | :---: | :---: |
| Demand | 7 | 9 | 18 |

17. In a factory there are 6 jobs to perform, each of which should go through machines A and B in the order A, B. The processing timings (in hours) for the jobs are given. Determine a sequence that would minimise the total elapsed time.

Job:	J_{1}	$\mathrm{~J}_{2}$	$\mathrm{~J}_{3}$	$\mathrm{~J}_{4}$	$\mathrm{~J}_{5}$	$\mathrm{~J}_{6}$
Machine A :	1	3	8	5	6	3
Machine B :	5	6	3	2	2	10

18. Write a note on the Least Cost method with reference to a transportation problem.
19. Solve the game whose pay off matrix is given by

Player B
Player $A\left[\begin{array}{rrr}15 & 2 & 3 \\ 6 & 5 & 7 \\ -7 & 4 & 0\end{array}\right]$
20. Solve the following minimal assignment problem

Man

		1	2	3	4
	I	12	30	2	15
	II	18	33	9	31
Job	III	44	25	24	21
	IV	23	30	28	14

Answer any 3 questions from the following (Weightage 3 each) :
21. Solve the following using simplex method

Maximize $z=6 x_{1}+4 x_{2}$
subject to
$-2 x_{1}+x_{2} \leq 2$
$x_{1}-x_{2} \leq 2$
$3 x_{1}+2 x_{2} \leq 9 \quad x_{1}, x_{2} \geq 0$.
22. Use dual simplex method to solve the following L.P.P.

Minimize $z=3 x_{1}+x_{2}$
Subject to
$x_{1}+x_{2} \geq 1 ; 2 x_{1}+3 x_{2} \geq 2$
$x_{1}, x_{2} \geq 0$.
23. Solve the following transportation problem by Vogel's method.

24. Use graphical method to minimize the time added to process the following jobs on the machine shown, u, for each machine find the job which should be done first. Also calculate the total time elapsed to complete both jobs

25. Solve the following 2×2 game graphically

Player B

$\begin{array}{llll}B_{1} & B_{2} & B_{3} & B_{4}\end{array}$
Player $\mathbf{A}_{\mathbf{A}_{1}}\left[\begin{array}{cccc}2 & 1 & 0 & -2 \\ 1 & 0 & 3 & 2\end{array}\right]$

