|||||||||||||||||||||||||||||||||
M 6053
Reg. No. : $\qquad$
Name : $\qquad$

# VI Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.) 

Examination, May 2014 CORE COURSE IN MATHEMATICS 6B12 MAT : Linear Algebra

Time: 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
a) Dimension of $\mathbb{R}^{n}$ is $\qquad$
b) Is $\mathbb{Q}$ a vector Space over $\mathbb{R}$ ?
c) The system of linear equation $A X=B$ is consistent if $\qquad$
d) If a matrix A is in row-reduced echelon form, non-zero leading entry in a row is $\qquad$ (Weightage 1)
Answer any six from the following (Weightage 1 each) :
2. Define vector space.
3. Give a basis for $\mathbb{R}^{3}$.
4. Prove that intersection of any number of subspaces of a vector space $V$ is a subspace of V .
5. What do you mean by row elementary operations?
6. If $\lambda$ is an eigen value of $A$, prove that $\lambda^{n}$ is an eigen value of $A^{n}$.
7. State Cayley Hamilton theorem.
8. Define a linear transformation between two vector spaces.
9. Prove that null space of a linear transformation from the vector space $\mathrm{V}_{1}$ to $\mathrm{V}_{2}$ is a subspace of $\mathrm{V}_{1}$.
10. Find $T(a, b)$ where the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $T(1,2)=(3,-1)$ and $T(0,1)=(2,1)$.
(Weightage $6 \times 1=6$ )
Answer any seven from the following (Weightage 2 each) :
11. Prove that every basis of a finite dimensional vector space V has the same number of elements.
12. Determine whether or not the vectors $(1,1,2),(2,3,1)$ and $(4,5,5)$ in $\mathbb{R}^{3}$ are linearly dependent.
13. Show that the equations $x+y+z=6,3 x+y+z=8,-x+y-2 z=-5$, $-2 x+2 y-3 z=-7$ are consistent and solve them.
14. Find all the non-trivial solutions of $2 x-y+3 z=0 ; 3 x+2 y+z=0 ; x-4 y+5 z=0$.
15. Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.
16. Prove that eigen values of a Hermitian matrix are all real.
17. Let $T: U \rightarrow V$ be a 1-1 linear map. Prove that the subset $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is linearly independent if and only if $\left\{\mathrm{T}\left(\mathrm{u}_{1}\right), \mathrm{T}\left(\mathrm{u}_{2}\right), \ldots, \mathrm{T}\left(\mathrm{u}_{n}\right)\right\}$ is linearly independent.
18. Find the null space, range and their dimensions of the linear transformation $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x+y, z, x-z)$.
19. Let $T$ be a linear operator on $P_{2}$, the set of all polynomials of degree $\leq 2$, defined by $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{0}+\left(a_{1}-a_{2}\right) x+\left(a_{0}+a_{1}+a_{2}\right) x^{2}$. Find $T^{-1}$.
20. Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$.

Answer any three from the following (Weightage 3 each) :
21. Let $\mathbb{R}^{+}$be the set of all positive real numbers. Check whether $\mathbb{R}^{+}$is a vector space over $\mathbb{R}$ or not with respect to the operations defined as $u+v=u v$ and $\alpha u=u \alpha$ for all $u, v \in \mathbb{R}^{+}$and $\alpha \in \mathbb{R}$.
22. Using row elementary transformations, find the inverse of the matrix
$\left[\begin{array}{rrr}1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3\end{array}\right]$.
23. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{rrr}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$.
24. Diagonalise the matrix $A=\left[\begin{array}{rrc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.
25. Let $T: R^{3} \rightarrow R^{2}$ be a linear transformation defined by $T(x, y, z)=(x+y, x+z)$. Find the matrix representation of $T$ with respect to the ordered basis $X=\{(1,0,1),(1,1,0),(0,1,1)\}$ in $R^{3}$ and $Y=\{(1,0),(0,1)\}$ in $R^{2}$.

