

M 6053

Reg. No. :

Name :

VI Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.) Examination, May 2014 CORE COURSE IN MATHEMATICS 6B12 MAT : Linear Algebra

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
 - a) Dimension of \mathbb{R}^n is ____
 - b) Is Q a vector Space over ℝ ?
 - c) The system of linear equation AX = B is consistent if ____
 - d) If a matrix A is in row-reduced echelon form, non-zero leading entry in a row is ______ (Weightage 1)

Answer any six from the following (Weightage 1 each) :

- 2. Define vector space.
- 3. Give a basis for \mathbb{R}^3 .
- 4. Prove that intersection of any number of subspaces of a vector space V is a subspace of V.
- 5. What do you mean by row elementary operations?
- 6. If λ is an eigen value of A, prove that λ^n is an eigen value of Aⁿ.
- 7. State Cayley Hamilton theorem.
- 8. Define a linear transformation between two vector spaces.

M 6053

- Prove that null space of a linear transformation from the vector space V₁ to V₂ is a subspace of V₁.
- 10. Find T (a, b) where the linear map T : $\mathbb{R}^2 \to \mathbb{R}^2$ is defined by T(1, 2) = (3, -1) and T(0,1) = (2, 1). (Weightage 6×1=6)

Answer any seven from the following (Weightage 2 each) :

- 11. Prove that every basis of a finite dimensional vector space V has the same number of elements.
- 12. Determine whether or not the vectors (1, 1, 2), (2, 3, 1) and (4, 5, 5) in ℝ³ are linearly dependent.
- 13. Show that the equations x + y + z = 6, 3x + y + z = 8, -x + y 2z = -5, -2x + 2y 3z = -7 are consistent and solve them.
- 14. Find all the non-trivial solutions of 2x y + 3z = 0; 3x + 2y + z = 0; x 4y + 5z = 0.
- 15. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- 16. Prove that eigen values of a Hermitian matrix are all real.
- 17. Let T : U → V be a 1-1 linear map. Prove that the subset {u₁, u₂, ..., u_n} is linearly independent if and only if {T(u₁), T (u₂), ..., T (u_n)} is linearly independent.
- 18. Find the null space, range and their dimensions of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y, z, x z).
- 19. Let T be a linear operator on P₂, the set of all polynomials of degree ≤ 2 , defined by T(a₀ + a₁x + a₂x²) = a₀ + (a₁ a₂) x + (a₀ + a₁ + a₂) x². Find T⁻¹.

20. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$. (Weightage 7×2=14)

Answer any three from the following (Weightage 3 each) :

- 21. Let \mathbb{R}^+ be the set of all positive real numbers. Check whether \mathbb{R}^+ is a vector space over \mathbb{R} or not with respect to the operations defined as u + v = uv and $\alpha u = u^{\alpha}$ for all $u, v \in \mathbb{R}^+$ and $\alpha \in \mathbb{R}$.
- 22. Using row elementary transformations, find the inverse of the matrix

[1	-1	1	
0	1	0	
2	0	3	

23. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$.

24. Diagonalise the matrix
$$A = \begin{vmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{vmatrix}$$

25. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T (x, y, z) = (x + y, x + z). Find the matrix representation of T with respect to the ordered basis $X = \{(1, 0, 1), (1, 1, 0), (0, 1, 1)\}$ in \mathbb{R}^3 and $Y = \{(1, 0), (0, 1)\}$ in \mathbb{R}^2 .

(Weightage 3×3=9)