Reg. No.
Name : \qquad

LIBRARY

VI Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal-ul-Ulama Degree (CCSS - Reg./Supple./Improv.)
 Examination, May 2013
 Core Course in Mathematics
 6B14 MAT : Elective - 3: OPERATION RESEARCH

Time: 3 Hours

Max. Weightage : 30

Instruction: Answer to all questions.

1. Fill in the blanks.
a) The number of extreme points of a convex set of feasible solution is \qquad
b) The dual of the dual is \qquad
c) Every vertex of the convex set of feasible solution is a \qquad
d) When total demand is equal to total supply, the transportation problem is said to be

Answer any 6 from the following.
(Weightage 1 each)
2. Express $x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}-5 x_{2} x_{3}$ in the form $X^{\top} A X$.
3. For a L.P.P. Define
i) Objective function
ii) Feasible solution.
4. Write the condition for optimality in simplex method.
5. Define the term "loop" associated with a Transportation problem.
6. Mathematically formulate the Assignment Problem.
7. Why the optimal solution of the Travelling salesman problem remains independent?
8. Explain the Minimax criterion in game theory.
9. Explain the term "Mixed strategy" in game theory.
10. State whether the following matrix has a saddle point $\left[\begin{array}{cc}1 & 0 \\ -4 & 3\end{array}\right]$
Р.т.O.

Answer any 7 questions from the following.
11. Let $f(x)$ be a convex function on a convex set S. Then prove that the set of points in S at which $f(x)$ takes on its global minimum, is a convex set.
12. Compare the canonical and standard forms of an LPP.
13. Using graphical method solve

Maximise $Z=8 x_{1}+6 x_{2}$
Subject to

$$
\begin{aligned}
& 4 x_{1}+2 x_{2} \leq 60 \\
& 2 x_{1}+4 x_{2} \leq 48 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

14. Explain the different steps involved in simplex algorithm.
15. Write down the dual of the following problem

$$
\operatorname{Max}: Z=4 x_{1}+2 x_{2}
$$

Subject to

$$
\begin{aligned}
& -x_{1}-x_{2} \leq-3 \\
& -x_{1}+x_{2} \geq-2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

16. Find the initial feasible solution to the following transportation problem by lowest cost entry method.

	W_{1}	W_{2}	W_{3}	
F_{1}	2	7	4	5
F_{2}	3	3	1	8
F_{3}	5	4	7	7
F_{4}	1	6	2	14
	7	9	18	

17. Solve the following minimal assignment problem

Man									
						1	2	3	4
I	12	30	21	15					
II	18	33	9	31					
Job $_{\text {III }}$	44	25	24	21					
IV	23	30	28	14					

18. Write explanatory note on the North - West corner method.
19. In a factory there are five jobs to perform each of which should go through to machines A and B in the order $A B$. The processing times for the jobs are given here. Find a sequence that will minimise the total time required in performing the following jobs on the machines

Job (i)	$:$	1	2	3	4	5
Machine A (Ai)	$:$	5	1	9	3	10
Machine B (Bi)	$:$	2	6	7	8	4

20. From the following game matrix, find the saddle point and state the game value

Answer any 3 questions from the following :
(Weightage 3 each)
21. Solve the following using simplex method

Maximise $Z=6 x_{1}+4 x_{2}$
Subject to $-2 x_{1}+x_{2} \leq 2$
$x_{1}-x_{2} \leq 2$
$3 x_{1}+2 x_{2} \leq 9$
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$.
22. Apply the principle of duality to solve the LPP
$\operatorname{Min} Z=2 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+4 x_{2} \geq 1 \\
& x_{1}+2 x_{2} \geq 1 \\
& 2 x_{1}+x_{2} \geq 1 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

23. Solve the following transportation problem whose cost matrix are given below (By Vogel's approximation method)

WAREHOUSE

Plant	W_{1}	W_{2}	W_{3}	W_{4}	Availability
P_{1}	190	300	500	100	70
P_{2}	700	300	400	600	90
P_{3}	400	100	600	200	180
Requirement	50	80	70	140	

24. Use graphical method to minimise the time added to process the following jobs on the machine shown i.e, for each machine find the job which should be done first. Also calculate the total time elapsed to complete both jobs.

| Job 1 | Sequence A B C D
 Time 3 4 2 6
 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Job 2 | Sequence C B A D
 Time 5 4 3 2 | 6 |

25. Solve the following 2×2 game graphically

> | | | Player B | | |
| :---: | :---: | :---: | :---: | :---: |
| | B_{1} | B_{2} | B_{3} | B_{4} |
| | A_{1} | | | |$\left[\begin{array}{llll}2 & 1 & 0 & -2 \\ 1 & 0 & 3 & 2\end{array}\right]$

(W. 3×3=9)

