Reg. No. : $\qquad$
Name : $\qquad$

VI Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./
B.S.W./B.A. Afsal UI Ulama Degree (CCSS - Reg./Supple./Improv.)

Examination, May 2013
CORE COURSE IN MATHEMATICS
6B12 MAT : Linear Algebra

Time : 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
(Weightage 1)
a) Dimension of $\mathbb{R}$ is $\qquad$
b) Is every vector space have a basis ?
c) The system of linear equation $A X=B$ is inconsistent if $\qquad$
d) If $\lambda$ is an eigen value of a matrix $A$, then the non-zero vector $X$ satisfying the condition $\mathrm{AX}=\lambda \mathrm{X}$ is known as $\qquad$ -.

Answer any six from the following :
(Weightage 1 each)
2. Define linear dependence and independence of vectors.
3. Give an example for a vector space.
4. Prove that $W=\{(a, a, a) / a \in \mathbb{R}\}$ is a subspace of $V=\mathbb{R}^{3}$.
5. What do you mean by row reduced echelon form of a matrix ? Give an example.
6. Define eigen values and eigen vectors of a square matrix.
7. Prove that the matrices $A$ and $A^{\top}$ have the same eigen values.
8. Check whether the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=\left(x^{2}, y^{2}\right)$ is a linear transformation or not.
9. Define nilpotent operator.
10. Define rank of a matrix.
(Weightage $6 \times 1=6$ )
Answer any seven from the following :
(Weightage 2 each)
11. Check whether $\mathbb{R}^{2}$ is a vector space over $\mathbb{R}$ or not with respect to the operations defined as follows :

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
\alpha(x, y)=(0,0)
\end{gathered}
$$

12. Determine whether or not the vectors $(1,2,5),(2,5,1)$ and $(1,5,2)$ in $\mathbb{R}^{3}$ are linearly dependent.
13. Show that the equations $x+2 y-z=3,3 x-y+2 z=1,2 x-2 y+3 z=2$, $x-y+z=-1$ are consistent and solve them.
14. Determine the values of $\lambda$ for which the system of equations $3 x+y-\lambda z=0$; $4 x-2 y-3 z=0 ; 2 \lambda x+4 y+\lambda z=0$ may possess non-trivial solution.
15. Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{rc}1 & -2 \\ -5 & 4\end{array}\right]$.
16. Prove that eigen values of a Skew-Hermitian matrix are either zero or purely imaginary.
17. Let $U$ and $V$ be vector spaces over the field $F$ and let $T: U \rightarrow V$ be a linear transformation. Then $T$ is one-to-one if and only if T maps linearly independent subsets of U onto linearly independent subsets of V .
18. Find the null space, range and their dimensions of the linear transformation $T: R^{4} \rightarrow R^{3}$ defined by $T(x, y, z, w)=(x+y+w, z, y+2 w)$.
19. Let $T$ be a linear operator defined on $\mathbb{R}^{3}$ such that $T\left(e_{1}\right)=e_{1}+e_{2}$, $T\left(e_{2}\right)=e_{1}-e_{2}+e_{3}, T\left(e_{3}\right)=3 e_{1}+4 e_{3}$ where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a standard basis for $\mathbb{R}^{3}$. Is $T$ non-singular? If so, find $T^{-1}$.
20. Find the rank of the matrix $A=\left[\begin{array}{rrrr}1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1\end{array}\right]$.

Answer any three from the following :
(Weightage 3 each)
21. Determine whether $(1,1,1,1),(1,2,3,2),(2,5,6,4)$ and $(2,6,8,5)$ form a basis of $\mathbb{R}^{4}$. If not, find the dimension of the subspace they span.
22. Using row elementary transformations, find the inverse of the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]
$$

23. Using Cayley-Hamilton theorem, find the inverse of the matrix

$$
A=\left[\begin{array}{rrr}
3 & 10 & 5 \\
-2 & -3 & -4 \\
3 & 5 & 7
\end{array}\right]
$$

24. Diagonalise the matrix $\mathrm{A}=\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
25. Let $T: R^{3} \rightarrow R^{2}$ be a linear transformation defined by $T(x, y, z)=(x+y, x+z)$.

Find the matrix representation of $T$ with respect to the ordered basis $X=\{(1,0,1),(1,1,0),(0,1,1)\}$ in $R^{3}$ and $Y=\{(1,3),(2,5)\}$ in $R^{2}$.
(Weightage $3 \times 3=9$ )

