Reg. No. :
Name : \qquad
VI Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal-UI-Ulama Degree (CCSS - Reg./Supple./Improv.) Examination, May 2013 CORE COURSE IN MATHEMATICS 6B11 MAT : Complex Analysis

Time: 3 Hours
Max. Weightage : 30

Instruction: Answer to all questions.

1. Fill in the blanks :
a) If z_{1} and z_{2} are any two complex numbers then $\left|z_{1}+z_{2}\right| \geq$
b) $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=$ \qquad
c) $\arg (z)+\arg (-z)=$ \qquad according as $\arg (z)$ is positive or negative.
d) If $z_{2}, z_{3} \neq 0$, then $\left|\frac{z_{1}}{z_{2}, z_{3}}\right|=$ \qquad
Questions 2 to 10 answer any 6 from the following 9 questions.
2. When a function $f(z)$ is said to be differentiable at z_{0} ?
3. Define a harmonic function.
4. Find the square root of $z=26$.
5. Find the principle argument Argz when $z=(\sqrt{3}-i)^{6}$
6. Prove that $f(z)=|z|^{2}$ is differentiable only at the origin.
7. State Cauchy's integral theorem.
8. If $f^{\prime}(z)=0$ everywhere in a domain D, then prove that $f(z)$ must be a constant throughout D.
9. Find the radius of convergence of the series $\sum a_{n} z^{2 n}$. If the radius of convergence $\sum a_{n} z^{n}$ is R.
10. Find the residue of $f(z)=\tan z$ at $z=\pi / 2$

Questions 11 to 20, Answer any 7 from the following 10 questions :
11. Show that an analytic fun. $f(z) u+i v$ is constant if its imaginary part is constant.
12. Show that $u=e^{x}(x \cos y-\sin y)$ satisfies Laplace's equation.
13. Evaluate $\int_{C} \frac{3 z-1}{z^{3}-z} d z$ where C is the circle $|z|=\frac{1}{2}$.
14. If $f(z)$ is a polynomial of degree $n(n \geq 1)$ with real or complex coefficients, then prove that $f(z)=0$ has at least one complex root.
15. If $f(z)$ is analytic within and on a circle C of radius r with centre at z_{0}, then prove that $\left|f^{n}\left(z_{0}\right)\right| \leq \mu \frac{n!}{r^{n}}$ for $n=0,1,2, \ldots$ where $\mu=\max |f(z)|$ on C.
16. Expand $\frac{1}{z}$ by Taylor's series about $z=1$.
17. State Cauchy's Residue theorem.
18. Evaluate $\int_{C} \frac{2 z^{2}+z}{z^{2}-1} d z$ where C is circle $|z-1|=1$.
19. Prove that $f(z)=\sin \left(\frac{1}{z-a}\right)$ at $z=a$ has an essential singularity.
20. Find out the zero's and discuss the nature of singularity of $f(z)=\left(\frac{z+1}{z^{2}+1}\right)^{2} \cdot(W .7 \times 2=14)$

Questions 21 to 25, answer any 3 from the following 5 questions :
21. Establish the necessary conditions for a function $f(z)$ to be analytic.
22. Iff(z) is a regularfunction of z, then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\left(u^{2}+v^{2}\right)$
23. From the integral $\int_{C} \frac{d z}{z+2}$ where C is the circle $|z|=1$. show that $\int_{0}^{\pi} \frac{1+2 \cos \theta}{5+4 \cos \theta} d \theta=0$.
24. State and prove Cauchy's integral formula.
25. Prove that $\int_{0}^{2 \pi} \frac{d \theta}{5+3 \cos \theta}=\pi / 2$.
(W. 3×3=9)

