

M 3135

VI Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal-UI-Ulama Degree (CCSS – Reg./Supple./Improv.) Examination, May 2013 CORE COURSE IN MATHEMATICS 6B10 MAT : Analysis and Topology

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
 - a) If P = { a = x₀, x₁, ..., x_n = b} is a partition of [a, b], then the Riemann sum of a function f : [a, b] → R is _____
 - b) The radius of convergence of the series $\sum \frac{x^n}{n^2}$ is _____
 - c) The interior of the set of set of all rational numbers is ____
 - d) The limit point of the set $\{1, \frac{1}{2}, \frac{1}{3}, ...\}$ is _____ (Weight 1)
- If f: [0, 6) → R be defined by f(x) = 4 for all x ∈ [0,6], show that f is integrable and evaluate integral.
- 3. Define the Riemann integral of a function $f : [a, b] \longrightarrow \mathbb{R}$.
- 4. If (f_n) is a sequence of functions defined on a subset D of \mathbb{R} with values in \mathbb{R} , where \mathbb{R} is the set of all real numbers, define the convergence of $\sum f_n$.
- 5. Show that $\lim \left(\frac{nx}{1+n^2x^2} \right) = 0$ for all $x \in \mathbb{R}$.
- 6. Prove that is a metric space each open sphere is an open set.
- If X is a complete metric space and Y is a complete subspace of X, show that Y is closed.

8. If X is a metric space and A \subset X, prove that A is closed in X if and only if A = \overline{A} .

-2-

- 9. If T_1 and T_2 are two topologies on a non empty set X, prove that $T_1 \cap T_2$ is a topology on K.
- 10. If X is a topological space and A is a subset of X, show that $\overline{A} = A \cup D(A)$, where D(A) is the set of all limit points of A. (6×1=6)

Answer any seven from the following (Weight 2 each) :

- 11. If $f(x) = x^2, x \in [0,4]$, calculate the Riemann sum if the portion P of [0, 4] is {0, 0.5, 2.5, 3.5, 4} with tags at the left end point of the intervals.
- 12. If $f:[a, b] \longrightarrow \mathbb{R}$ is monotone on [a, b], prove that $f \in \mathbb{R}[a, b]$.
- 13. State and prove the Cauchy criterion for uniform convergence of a sequence $\{f_n\}$ for function on A, $A \subseteq \mathbb{R}$.
- 14. If (f_n) is a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and if (f_n) converges uniformly on A to a function $f : A \longrightarrow \mathbb{R}$, prove that f is uniformly continuous on A.
- 15. If R is the radius of convergence of the power series $\sum a_n x^n$, then prove that the series is absolutely convergent if |x| < R and divergent in |x| > R.
- 16. If X is a non-empty set and d is a real function of ordered pairs of elements of X which satisfy the following two conditions :
 - i) $d(x, y) = 0 \iff x = y$ and
 - ii) d (x, y) \leq d (x, z) + d (y, z), prove that d is a metric on X.
- 17. Prove that every non-empty open set on the real line is the union of a countable disjoint class of open intervals.
- If a convergent sequence in a metric space X has infinitely many distinct points, prove that its limit is a limit point of the set of points of the sequence.
- 19. If X is a topological space and A is an arbitrary subset of X, prove that

 $\overline{A} = \{x : each neighbourhood of x intersects A\}.$

 Show that a subset of a topological space is perfect if and only if it is closed and has no isolated points. (7×2=14)

Answer any three from the following (Weight 3 each) :

21 If $f \in R[a, b]$ and if f is continuous at a point $C \in [a, b]$, prove that the indefinite

integral $F(x) = \int f dx \in [a,b]$ is differentiable at C and F'(c) = f(c).

- 22. If (f_n) is a sequence of functions in R[a,b] and suppose (f_n) converges uniformly on [a, b], show that $f \in R[a,b]$.
- 23. If X is a metric space with metric d, prove that $d_1(x, y) = d(x, y)/1+d(x, y)$ is also a metric on X.
- 24. Show that is a metric space X :
 - 1) Any intersection of closed sets in X is closed and
 - 2) Finite union of closed sets in X is closed.
- 25. State and prove Cantor's intersection theorem.

 $(3 \times 3 = 9)$