Reg. No. : $\qquad$
Name:


M 489

# VI Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal UI Ulama Degree (CCSS - Regular) Examination, April 2012 CORE COURSE IN MATHEMATICS <br> <br> 6B 14 MAT (3) : Operation Research (Elective) 

 <br> <br> 6B 14 MAT (3) : Operation Research (Elective)}

Time: 3 Hours
Max. Weightage : 30
Instruction: Answer to all questions.

1. Fill in the blanks :
a) A necessary and sufficient condition for the existence of a feasible solution to the general transportation problem is $\qquad$
b) The dual of the dual is $\qquad$
c) The standard Hungarian Assignment method deals with $\qquad$ types of problems.
i) Maximisation
ii) Minimisation
iii) None of these
d) $\qquad$ is a position of an element in the pay off matrix which is the minimum in its row and maximum in its column.
Answer any six from the following (Weightage -1 each) :
For an L.P.P. define the following :
2. a) Basic feasible solution.
b) Degenerate basic solution.
3. Define the term "loop" associated with a transportation problem.
4. Define the following terms used in sequencing.
a) Total elapsed time
b) Idle time on a machine
5. Define the term "pay off" matrix in game theory.
6. State whether the following game matrix has a saddle point.
$\left[\begin{array}{rr}1 & 0 \\ -1 & 3\end{array}\right]$.
7. Explain "Principle of dominance" in game theory.
8. Define a convex function.
P.T.O.
9. Express $x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}-5 x_{2} x_{3}$ in the form $X^{\top} A X$.
10. Write the necessary and sufficient condition of a basic feasible solution to an LPP to be optimum.
(W $-6 \times 1=6$ )
Answer any 7 questions from the following (Weightage - 2 each) :
11. Prove that the set of feasible solutions to an LPP is a convex set.
12. Explain different steps involved in a simplex algorithm.
13. Use graphical method to solve the L.P.P. :

Maximise $z=2 x_{1}+4 x_{2}$ subject to the constraints $x_{1}+2 x_{2} \leq 5, x_{1}+x_{2} \leq 4$; $x_{1}, x_{2} \geq 0$.
14. Compare the Canonical and standard forms of an L.P.P.
15. Formulate the dual of the following linear programming problem :

Maximize $z=5 x_{1}+3 x_{2}$ subject to the constraints $3 x_{1}+5 x_{2} \leq 15 ; 5 x_{1}+2 x_{2} \leq 10$, $\mathrm{x}_{1} \geq 0$ and $\mathrm{x}_{2} \geq 0$.
16. Find the initial feasible solution to the transportation problem given below, by north west :

|  | Origin | DESTINATION |  |  | Supply |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Corner method | $\mathrm{O}_{1}$ | 2 | 7 | 4 | 5 |
|  | $\mathrm{O}_{2}$ | 3 | 3 | 1 | 8 |
|  | $\mathrm{O}_{3}$ | 5 | 4 | 7 | 7 |
|  | $\mathrm{O}_{4}$ | 1 | 6 | 2 |  |
|  | Demand | 7 | 9 | 18 |  |

17. Solve the following minimal assignment problem:

|  |  | MAN |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | 12 30 21 | 15 |  |  |
| JOB | II | 18 | 33 | 9 | 31 |
|  | III | 24 | 25 | 24 | 21 |
|  | IV | 23 | 30 | 28 | 14 |
|  |  |  |  |  |  |

18. Write an explanatory note on the least lost method with reference to a Transportation problem.
19. Find a sequence that will minimise the total time required in performing the following jobs on the machine $A$ and $B$ in order $A B$. Processing times in hours are as given below:

| Job | $\mathrm{J}_{1}$ | $\mathrm{~J}_{2}$ | $\mathrm{~J}_{3}$ | $\mathrm{~J}_{4}$ | $\mathrm{~J}_{5}$ | $\mathrm{~J}_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Machine <br> A | 1 | 3 | 8 | 5 | 6 | 3 |
| Machine <br> $\mathbf{B}$ | 5 | 6 | 3 | 2 | 2 | 10 |

20. The following is a pay off matrix :

$$
X\left[\begin{array}{cc}
1 & -2 \\
2 & -1
\end{array}\right]
$$

What is the value of the game? Who will be winner of the game? Why? (W-7×2=14)

Answer any 3 questions from the following (Weightage - 3 each) :
21. Solve using simplex method :

Maximise

$$
\begin{aligned}
& Z=5 x_{1}+3 x_{2} \\
& x_{1}+x_{2} \leq 2 \\
& 5 x_{1}+2 x_{2} \leq 10 \\
& 3 x_{1}+8 x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

$$
\text { Subject to } \quad x_{1}+x_{2} \leq 2
$$

22. Use dual complex method to solve the following LPP:

Minimize $z=3 x_{1}+x_{2}$ subject to $x_{1}+x_{2} \geq 1 ; 2 x_{1}+3 x_{2} \geq 2, x_{1}, x_{2} \geq 0$.
23. Solve the following transportation problem by Vogel's method :

24. Solve graphically the game whose pay off matrix is :
$B_{1}$
$\mathrm{B}_{2}$
$B_{3}$
$B_{4}$
$B_{5}$

25. Use graphical method to minimize the time added to process the following jobs on the machines shown, $u$, for each machine find the job which should be done first . Also calculate the total time elapsed to complete both the jobs :
Job 1 $^{\text {Sequence }}$ A $\quad B \quad C \quad D \quad E$
$\begin{array}{llllll}\text { Time } & 3 & 4 & 2 & 6 & 2\end{array}$

| Job $_{2}$ Sequence | C | B | A | D | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Time | 5 | 4 | 3 | 2 | 6 |

