Reg. No. : \qquad
Name : \qquad

VI Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal UI Ulama Degree (CCSS-Regular) Examination, April 2012 CORE COURSE IN MATHEMATICS
 6B12 MAT : Linear Algebra

Time: 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
a) Dimension of $P_{n}(t)$ of all polynomials of degree less than or equal to n with real coefficients is \qquad
b) Is every vector space have a basis ?
c) Roots of characteristic equation of a square matrix is known as \qquad
d) If a matrix A is in row-reduced echelon form, then the rank of A is \qquad
(Weightage 1)
Answer any six from the following :
2. Define basis of a vector space.
3. Prove that every subset of a linearly dependent set is linearly dependent.
4. Prove that the set of all symmetric matrices of order n is a subspace of the vector space of all square matrices of order n.
5. Explain the conditions for the consistency and number of solutions of non-homogeneous linear system of equations $A X=B$.
6. If λ is an eigen value of A, prove that λ^{n} is an eigen value of A^{n}.
7. State Cayley Hamilton theorem.
8. Check whether the function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y, z)=(x+1, y+z)$ is a linear transformation or not.
9. Define null space and range space of a linear transformation.
10. Define inverse of a linear transformation.

Answer any seven from the following :
(Weightage 2 each)
11. Show that $\{(1,0,0)(0,1,0),(1,1,1)\}$ is a basis for \mathbb{R}^{3}.
12. Check whether or not $u=2 t^{2}+4 t-3$ and $v=4 t^{2}+8 t-6$ are linearly dependent.
13. Test for consistency and solve the equations $x+y+z=6, x+2 y+3 z=14$, $x+4 y+7 z=30$.
14. Determine the values of λ for which the system of equations $3 x+y-\lambda z=0$; $4 x-2 y-3 z=0 ; 2 \lambda x+4 y+\lambda z=0$ may possess non-trivial solution.
15. Find the eigen values of $\left[\begin{array}{rrr}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
16. Prove that eigen vectors corresponding to distinct eigen values of a matrix are linearly independent.
17. Let $T: U \rightarrow V$ be a linear map. Prove that T is one-to-one if and only if null space of T is $\{0\}$.
18. Find the null space, range and their dimensions of the linear transformation $T: R^{3} \rightarrow R$ defined by $T(x, y, z)=x+3 y$.
19. Let T be a linear operator on P_{2}, the set of all polynomials of degree ≤ 2, defined by $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{0}+\left(a_{1}-a_{2}\right) x+\left(a_{0}+a_{1}+a_{2}\right) x^{2}$. Find T^{-1}.
20. Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$.

Answer any three from the following :

(Weightage 3 each)
21. Check whether \mathbb{R}^{n} is a vector space over \mathbb{R} or not with respect to the operations defined as follows. $\left(x_{1}, x_{2}, \ldots x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)$ $\alpha\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{n}\right)$.
22. Using row elementary transformations, find the inverse of the matrix $\left[\begin{array}{rrr}1 & 0 & 2 \\ 3 & 1 & -1 \\ -2 & 1 & 3\end{array}\right]$.
23. Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{rrr}1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2\end{array}\right]$.
24. Diagonalise the matrix $\mathrm{A}=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$.
25. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T(x, y, z)=(0, x+y, x+y+z)$. Find the matrix representation of T with respect to the ordered basis $X=\{(1,0,1),(1,1,0),(0,1,1)\}$ in \mathbb{R}^{3} and $Y=\left\{(1,0,0),(0,1,0),(0,0,1)\right.$ in \mathbb{R}^{3}.
(Weightage $3 \times 3=9$)

