Reg. No. : \qquad
Name : \qquad

VI Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./
 - B.A. Afsal UI Ulama Degree (CCSS - Regular)
 Examination, April 2012
 CORE COURSE IN MATHEMATICS
 6B11 MAT : Complex Analysis

Time: 3 Hours
Max. Weightage : 30

Instruction : Answer all questions.

1. Fill in the blanks :
a) For any two complex numbers z_{1} and $z_{2}\left|z_{1}+z_{2}\right| \leq$ \qquad
b) $\left|z_{1}-z_{2}\right| \geq$ \qquad
c) $\left|\frac{z_{1}}{z_{2} z_{3}}\right|=$ \qquad when z_{2} and z_{3} are non zero.
d) $z \overline{3}=$ \qquad
Questions 2 to 10 . Answer any 6 from the following 9 questions.
2. Write the principal argument of the complex number $-1-i$ which lies in the $3^{\text {rd }}$ quadrant.
3. Find the square root of the complex number $z=1-\sqrt{3} i$.
4. Define a harmonic function.
5. Prove that $f(z)=|z|^{2}$ is differentiable only at the origin.
6. Find the values of z for which $e^{z}=-1$.
7. Define the principal branch of $\log z$.
8. State Cauchy-Goarsat theorem.
9. When a series $\sum a_{n} z^{n}$ is said to be conditionally convergent ?
10. What is the nature of singularity for e^{z} at $z=\infty$?

Questions 11 to 20. Answer any 7 from the following 10 questions.
11. Verify Cauchy-Riemann conditions for the following function

$$
f(z)=\frac{x-i y}{x^{2}+y^{2}}
$$

12. Show that an analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is constant if its real part is constant.
13. Evaluate $\int_{C} \frac{d z}{z-a}$ where C is the circle $|z-a|=r$.
14. State and prove Liouville's theorem.
15. If $f(z)$ is a polynomial of degree $u(u \geq 1)$ with real or complex coefficients then prove that the equation $f(z)=0$ has at least one complex root.
16. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} z^{n}$.
17. Prove that the function $f(z)=\frac{\sin \left(3-z_{0}\right)}{z-z_{0}}$ has a removable singularity at $z=z_{0}$.
18. Find the zeros and discuss the nature of singularity of $f(z)=\frac{z-2}{z^{2}} \sin \left(\frac{1}{z-1}\right)$.
19. Find the residues of $\frac{z+1}{z^{2}(3-2)}$ at its poles.
20. Evaluate the integral $\int_{C} \frac{5 z-2}{z(3-1)} d z$ where C is circle $|z|=2$ described counter clockwise.
(W-7×2=14)
Questions 21 to 25. Answer any 3 from the following 5 questions :
21. Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at the origin, even though CauchyRiemann equations are satisfied at that point.
22. Show that $u=y^{3}-3 x^{2} y$ is a harmonic function. Find its conjugate.
23. State and prove Cauchy's integral formula.
24. If $f(z)$ is analytic inside and on a closed contour C and z_{0} is any point inside C, then prove that $f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(3-z_{0}\right)^{2}} d z$.
25. Show that $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}=\frac{2 \pi}{\sqrt{3}}$.
