

M 484

VI Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal Ul Ulama Degree (CCSS – Regular) Examination, April 2012 CORE COURSE IN MATHEMATICS 6B11 MAT : Complex Analysis

Time: 3 Hours

Max. Weightage: 30

Instruction : Answer all questions.

- 1. Fill in the blanks :
 - a) For any two complex numbers z_1 and $z_2 | z_1 + z_2 | \le -$
 - b) $|z_1 z_2| \ge _$
 - c) $\left| \frac{z_1}{z_2 z_3} \right| =$ _____ when z_2 and z_3 are non zero.
 - d) z3 = _____

(W-1)

Questions 2 to 10. Answer any 6 from the following 9 questions.

- 2. Write the principal argument of the complex number -1 i which lies in the 3rd quadrant.
- 3. Find the square root of the complex number $z = 1 \sqrt{3}i$.
- 4. Define a harmonic function.
- 5. Prove that $f(z) = |z|^2$ is differentiable only at the origin.
- 6. Find the values of z for which $e^z = -1$.

7. Define the principal branch of Log z.

- 8. State Cauchy-Goarsat theorem.
- 9. When a series $\sum a_n z^n$ is said to be conditionally convergent ?
- 10. What is the nature of singularity for $e^{z}at z = \infty$?

Questions 11 to 20. Answer any 7 from the following 10 questions.

11. Verify Cauchy-Riemann conditions for the following function

$$f(z) = \frac{x - iy}{x^2 + y^2}.$$

- 12. Show that an analytic function f(z) = u + iv is constant if its real part is constant.
- 13. Evaluate $\int_C \frac{dz}{z-a}$ where C is the circle |z-a| = r.
- 14. State and prove Liouville's theorem.
- 15. If f(z) is a polynomial of degree u (u \ge 1) with real or complex coefficients then prove that the equation f(z) = 0 has at least one complex root.
- 16. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} z^n$.
- 17. Prove that the function $f(z) = \frac{\sin(3 z_0)}{z z_0}$ has a removable singularity at $z = z_0$.
- 18. Find the zeros and discuss the nature of singularity of $f(z) = \frac{z-2}{z^2} \sin\left(\frac{1}{z-1}\right)$.

 $(W-6\times 1=6)$

- 19. Find the residues of $\frac{z+1}{z^2(3-2)}$ at its poles.
- 20. Evaluate the integral $\int_C \frac{5z-2}{z(3-1)} dz$ where C is circle |z| = 2 described counter clockwise. (W-7×2=14)

Questions 21 to 25. Answer any 3 from the following 5 questions :

- 21. Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin, even though Cauchy-Riemann equations are satisfied at that point.
- 22. Show that $u = y^3 3x^2y$ is a harmonic function. Find its conjugate.
- 23. State and prove Cauchy's integral formula.
- 24. If f(z) is analytic inside and on a closed contour C and z_0 is any point inside C, then prove that $f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(3-z_0)^2} dz$.
- 25. Show that $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta} = \frac{2\pi}{\sqrt{3}}.$

 $(W-3\times3=9)$