K17U 2340

Reg. No. :
Name: \qquad

V Semester B.Sc. Degree (CCSS - Sup/Imp.) Examination, November 2017 (2013 \& Earlier Admissions) CORE COURSE IN MATHEMATICS 5B08MAT : Graph Theory

Time: 3 Hours
Max. Weightage : 30
Instruction: Answerall questions.
Fill in the blanks :

1. a) Number of edges of a complete graph with 6 vertices is \qquad .
b) Minimum number of vertices in a tree with at least two edges is \qquad -
c) A path with 10 vertices has \qquad edges.
d) Number of spanning trees with 3 vertices is \qquad
Answer any six of the following :
2. Define a bridge.
3. Draw an Euler graph with 6 vertices.
4. Give an example of a matching which is perfect.
5. Define Hamiltonian graph.
6. State first theorem on Digraph theory.
7. Draw all non isomorphic simple graphs with 3 vertices.
8. Define a directed walk.
9. Define closure of a graph.
10. Give an example of a simple graph with exactly one cut vertex.

Answer any seven of the following :
11. Draw a three regular simple graph.
12. Write the incidence matrix of $\mathrm{K}_{2,2}$.
13. Let G be a graph without any loops. If for every pair of distinct vertices u and v of G there is precisely one path from u to v, then prove that G is a tree.
14. Prove that a connected graph with n vertices has at least $n-1$ edges.
15. Prove that K_{5} is Euler.
16. Prove that closure of a simple graph G is Hamiltonian if G is Hamiltonian.
17. Let D be a weakly connected digraph with atleast one arc. Prove that if D is Euler then od $(\mathrm{v})=\mathrm{id}(\mathrm{v})$ for every vertex v .
18. Define de Bruijn sequence.
19. Prove that a strongly connected tournament is Hamiltonian.
20. Is it true that : If tournament T is Hamiltonian then it is strongly connected. Give reason.
(Wt. $7 \times 2=14$)
Answer any three of the following.
21. Let G be a k - regular graph, where k is an odd number. Prove that number of edges in G is a multiple of k .
22. Let T be a tree with at least two vertices and let $P=u_{0} u_{1} \ldots u_{n}$ be a longest path in T. Then prove that both u_{0} and u_{n} have degree 1 .
23. Prove that a connected graph G is Euler if and only if the degree of every vertex is even.
24. Prove that a matching M of a graph G is maximum if and only if G contains an M -augmenting path.
25. Let u and v be distinct vertices of the digraph D. Prove that every directed $u-v$ walk in D contains a directed $u-v$ path.

