M 9811

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CCSS - Reg./Supple./Imp.)
 Examination, November 2015 CORE COURSE IN MATHEMATICS
 5 B05 MAT : Vector Analysis

Time : 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
a) Two non-zero vectors \vec{a} and \vec{b} are orthogonal if and only if \qquad
b) Vector equation of the plane through $\mathrm{P}_{0}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, z_{0}\right)$ and normal to $\overrightarrow{\mathrm{n}}$ is
c) If \vec{v} is the velocity vector of a particle moving along a smooth curve in space at time t, then acceleration vector is \qquad
d) If k is the curvature then center of curvature ρ is \qquad (Weightage 1)
Answer any six from the following (Weightage 1 each) :
2. Find the area of the triangle with vertices $(1,-1,0),(2,1,-1)$ and $(-1,1,2)$.
3. Find the equation of the cylinder $x^{2}+(y-3)^{2}=9$ in cylindrical coordinates.
4. If $f(x, y)=\frac{2 y}{y+\cos x}$, find f_{x}.
5. Find $\frac{d w}{d t}$ at $t=\frac{\pi}{2}$ if $w=x y, x=\cos t, y=\sin t$.
6. State Euler's theorem on homogeneous functions.
7. Find the area of the region R bounded by $y=x$ and $y=x^{2}$ in the first quadrant.
8. Find the average value of $f(x, y)=x \cos (x y)$ over the rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1$.
9. Find the gradient field of $\phi=x y z$.
10. State Stoke's theorem.

Answer any seven from the following (Weightage 2 each) :
11. Find the vector projection of $\vec{b}=6 \hat{i}+3 \hat{j}+2 \hat{k}$ onto $\vec{a}=\hat{i}-2 \hat{j}-2 \hat{k}$ and scalar component of \vec{b} in the direction of \vec{a}.
12. Find the distance from the point $(1,1,5)$ to the line $x=1+t, y=3-t, z=2 t$.
13. Find the unit tangent vector and principal unit normal for the circular motion $\vec{r}(t)=\cos 2 t \hat{i}+\sin 2 t \hat{j}$.
14. Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}$.
15. Find the linearization of $f(x, y)=x^{2}-x y+\frac{1}{2} y^{2}+3$ at the point $(3,2)$.
16. Find the derivative of $f(x, y)=x e^{y}+\cos (x y)$ at $(2,0)$ in the direction of the vector $3 \hat{i}-4 \hat{j}$.
17. Find the centroid of the region in the first quadrant that is bounded above the line $y=x$ and below the parabola $y=x^{2}$.
18. Find the area of the region that lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$.
19. Show that the work done by force field $\vec{F}=y z \hat{i}+x z \hat{j}+x y \hat{k}$ is independent of path. Also find the work done along any smooth curve joining the point ($-1,3,9$) to ($1,6,-4$).
20. Integrate xyz over the surface of the cube cut from the first octant by the planes $x=1, y=1$ and $z=1$.
(Weightage $7 \times 2=14$)

Answer any three from the following (Weightage 3 each) :

21. Find the greatest and smallest values that the function $f(x, y)=x y$ takes on the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{2}=1$.
22. Find the volume of the upper region D cut from the solid sphere $\rho \leq 1$ by the cone $\phi=\frac{\pi}{3}$.
23. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x$.
24. Find the flux of $\overrightarrow{\mathrm{F}}=y z \hat{i}+x \hat{\mathrm{j}}-z^{2} \hat{k}$ outward through the parabolic cylinder $y=x^{2}, 0 \leq x \leq 1,0 \leq z \leq 4$.
25. Verify Green's theorem in the plane for the field $\vec{F}=(x-y) \hat{i}+x \hat{j}$ and the region R bounded by the unit circle $C: \vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}, 0 \leq t \leq 2 \pi$. (Weightage $3 \times 3=9$)
