M 9812

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CCSS - Reg./Supple./Imp.) Examination, November 2015 CORE COURSE IN MATHEMATICS
 5B06 MAT : Real Analysis

Time: 3 Hours
Max. Weightage : 30

1. Fill in the blanks.
a) The set of all $x \in \mathbb{R}$ that satisfy $\left|x^{2}-1\right| \leq 3$ is \qquad
b) If $x \in V_{\varepsilon}$ (a) for $a \in \mathbb{R}$ and for every $\varepsilon>0$, then $x=$ \qquad
c) $\inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=$ \qquad
d) Every non-empty subset of \mathbb{R} that has \qquad has an infimum in $\mathbb{R} . \quad(W=1)$

Answer any six questions from the following (Weightage one each).
2. If $y>0$, show that there exist some $n_{y} \in N$ such that $n_{y}-1 \leq y \leq n_{y}$.
3. If $a, b \in \mathbb{R}$, prove that $||a|-|b|| \leq|a-b|$.
4. Prove that a sequence in \mathbb{R} can have at most one limit.
5. If $X=\left(x_{n}\right)$ is a convergent sequence of real numbers and if $x_{n} \geq 0$ for all $n \in \mathbb{N}$, show that $x=\lim \left(x_{n}\right) \geq 0$.
6. Prove that $\lim \left(\frac{\sin n}{n}\right)=0$.
7. Show that the sequence $\left(Y_{n}\right)$ is a Cauchy sequence.
8. State the Ratio test and Raabe's test for the convergence of a series.
P.T.O.
9. If I is an interval, $f: I \rightarrow \mathbb{R}$ is continuous on I and if $f(a)<k<f(b), a, b \in I, k \in \mathbb{R}$, show that there exists a point $c \in I$ between ' a ' and ' b ' such that $f(c)=k$.
10. If $f: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}$, is uniformly continuous on A and if $\left(x_{n}\right)$ is a Cauchy sequence in A, prove that $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in \mathbb{R}.
($6 \times 1=6$)
Answer any seven questions from the following (Weightage 2 each).
11. Show that there does not exist a rational number x such that $x^{2}=2$.
12. Prove that the set \mathbb{R} of all real numbers is not countable.
13. If $\left(x_{n}\right)$ is a sequence of real numbers, $\left(a_{n}\right)$ is a sequence of positive real numbers with $\lim \left(a_{n}\right)=0$ and if for some constant $c>0$ and $m \in N,\left|x_{n}-x\right| \leq C . a_{n}$, for $n \geq m$, where $x \in \mathbb{R}$, show that $\lim \left(x_{n}\right)=x$.
14. If $X=\left(x_{n}: n \in \mathbb{N}\right)$ is a sequence of real numbers and $m \in \mathbb{N}$, show that the m-tail $X_{m}=\left(x_{m+n}: n \in \mathbb{N}\right)$ of X converges if and only if X converges.
15. If a sequence $X=\left(x_{n}\right)$ of real numbers converges to a real number x, prove that any subsequence $X^{\prime}=\left(x_{n_{k}}\right)$ of X also converges to x.
16. Show that the series $\sum_{n=1}^{\infty} 1 / n^{2}$ is convergent.
17. If $X=\left(x_{n}\right)$ is a convergent monotone sequence and if the series $\sum y_{n}$ is convergent, prove that series $\sum x_{n} y_{n}$ is convergent.
18. If $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$ is a closed bounded interval and if $\mathrm{f}: \mathrm{I} \rightarrow \mathbb{R}$ is continuous on I , prove that the set $f(I)=\{f(x): x \in I\}$ is a closed, bounded interval.
19. If I is a closed bounded interval and if $f: I \rightarrow \mathbb{R}$ is continuous on I, prove that f is uniformly continuous on I.
20. If $f: I \rightarrow \mathbb{R}$ is increasing on I, where $I \subseteq \mathbb{R}$ is an interval, prove that $\lim _{x \rightarrow c_{-}} f=\sup \{f(x): x \in I, x<c\}$, where $c \in I$ is not an end point of I.

Answer any three questions from the following (Weightage 3 each).
21. If S is a subset of \mathbb{R} that contains atleast two points and has the property that $[x, y] \subseteq S$ whenever $x, y \in S$ with $x<y$, then prove that S is an interval.
22. If $\mathrm{I}_{\mathrm{n}}=\left[\mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}\right], \mathrm{n} \in \mathbb{N}$ is a nested sequence of closed bounded intervals, prove that there exist a number $\zeta \in \mathbb{R}$ such that $\zeta \in I_{\mathrm{n}}$ for all $\mathrm{n} \in \mathbb{N}$.
23. Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
24. If $I=[a, b]$ is a closed bounded interval and if $f: I \rightarrow \mathbb{R}$ is continuous on I, prove that f has an absolute maximum and an absolute minimum on I .
25. State and prove the continuous inverse theorem.

