

Reg. No. :

Name :

V Semester B.Sc. Degree (CCSS – Reg./Supple./Imp.) Examination, November 2015 CORE COURSE IN MATHEMATICS 5B06 MAT : Real Analysis

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks.
 - a) The set of all $x \in \mathbb{R}$ that satisfy $|x^2 1| \le 3$ is
 - b) If $x \in V_{\varepsilon}(a)$ for $a \in \mathbb{R}$ and for every $\varepsilon > 0$, then x =_____
 - c) $\inf\left\{\frac{1}{n}:n\in\mathbb{N}\right\} =$ ____

d) Every non-empty subset of \mathbb{R} that has _____ has an infimum in \mathbb{R} . (W = 1)

Answer any six questions from the following (Weightage one each).

- 2. If y > 0, show that there exist some $n_y \in \mathbb{N}$ such that $n_y 1 \le y \le n_y$.
- 3. If $a, b \in \mathbb{R}$, prove that $|a| |b|| \le |a b|$.
- 4. Prove that a sequence in IR can have at most one limit.
- 5. If $X = (x_n)$ is a convergent sequence of real numbers and if $x_n \ge 0$ for all $n \in \mathbb{N}$, show that $x = \lim (x_n) \ge 0$.
- 6. Prove that $\lim_{n \to \infty} \left(\frac{\sin n}{n} \right) = 0$.
- 7. Show that the sequence (Y_n) is a Cauchy sequence.
- 8. State the Ratio test and Raabe's test for the convergence of a series.

- 9. If I is an interval, $f: I \rightarrow \mathbb{R}$ is continuous on I and if f(a) < k < f(b), $a, b \in I, k \in \mathbb{R}$, show that there exists a point $c \in I$ between 'a' and 'b' such that f(c) = k.
- 10. If $f : A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$, is uniformly continuous on A and if (x_n) is a Cauchy sequence in A, prove that $(f(x_n))$ is a Cauchy sequence in \mathbb{R} . (6x1=6)

Answer any seven questions from the following (Weightage 2 each).

- 11. Show that there does not exist a rational number x such that $x^2 = 2$.
- 12. Prove that the set IR of all real numbers is not countable.
- 13. If (x_n) is a sequence of real numbers, (a_n) is a sequence of positive real numbers with lim $(a_n) = 0$ and if for some constant c > 0 and $m \in \mathbb{N}$, $|x_n - x| \le C.a_n$, for $n \ge m$, where $x \in \mathbb{R}$, show that lim $(x_n) = x$.
- If X = (x_n : n ∈ N) is a sequence of real numbers and m ∈ N, show that the m-tail X_m = (x_{m+n} : n ∈ N) of X converges if and only if X converges.
- 15. If a sequence $X = (x_n)$ of real numbers converges to a real number x, prove that any subsequence $X' = (x_{n_k})$ of X also converges to x.
- 16. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.
- 17. If $X = (x_n)$ is a convergent monotone sequence and if the series $\sum y_n$ is convergent, prove that series $\sum x_n y_n$ is convergent.
- 18. If I = [a, b] is a closed bounded interval and if f: I → IR is continuous on I, prove that the set f (I) = {f (x) : x ∈ I} is a closed, bounded interval.
- If I is a closed bounded interval and if f: I → IR is continuous on I, prove that f is uniformly continuous on I.
- 20. If $f: I \to \mathbb{R}$ is increasing on I, where $I \subseteq \mathbb{R}$ is an interval, prove that

 $\lim_{x\to c^-} f = \sup \{f(x) : x \in I, x < c\}, \text{ where } c \in I \text{ is not an end point of } I.$ (7×2=14)

Answer any three questions from the following (Weightage 3 each).

- 21. If S is a subset of IR that contains atleast two points and has the property that $[x, y] \subseteq S$ whenever x, $y \in S$ with x < y, then prove that S is an interval.
- 22. If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ is a nested sequence of closed bounded intervals, prove that there exist a number $\zeta \in \mathbb{R}$ such that $\zeta \in I_n$ for all $n \in \mathbb{N}$.
- 23. Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
- 24. If I = [a, b] is a closed bounded interval and if $f : I \rightarrow IR$ is continuous on I, prove that f has an absolute maximum and an absolute minimum on I.
- 25. State and prove the continuous inverse theorem.

 $(3 \times 3 = 9)$