M 9814
Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CCSS-Reg./Supple./Imp.) Examination, November 2015 CORE COURSE IN MATHEMATICS
 5B08 MAT : Graph Theory

Time: 3 Hours
Max. Weightage : 30
Instruction: Answerall questions.
Fill in the blanks :

1. a) The number of edges in a complete graph with n vertices is \qquad
b) The join of the complements of Km and Kn is the complete bipartite graph
c) A connected graph G with n vertices has at least \qquad edges.
d) Let G be a simple graph on vertices with $n \geq 3$, if $C(G)=K n$, then G is $(W=1)$ Answer any six from the following. Wt : 1 each.
2. Let G be a simple graph with n vertices. Define the complement $\overline{\mathrm{G}}$ of G . Give an example.
3. Draw $K_{1,2,2}$ and $K_{2,2,2}$.
4. Define the vertex connectivity of a simple graph G with an example.
5. Define Euler tour of a graph G and Hamiltonian path in a graph G.
6. Give an example of a matching in G which is maximum but not perfect.
7. Draw the de Bruijin diagram $D_{2,3}$.
8. Prove that a tournament T is Hamiltonian if it is strongly connected.
9. Define a K-regular digraph. Give an example of a 2 -regular digraph with 5 vertices.
10. Draw the join of the graphs K_{2} and K_{3}.

Answer any 7 of the following. Wt : 2 each.
11. Define graph isomorphism. Give example.
12. State and prove the first theorem of graph theory.
13. Define self-complementary graph. Give an example.
14. Let u and v be distinct vertices of a tree T. Then prove that there is precisely one path from u to v.
15. Let G be a connected graph. Then G is a tree if and only if every edge of G is a bridge.
16. Prove that a graph G is connected if and only if it has a spanning tree.
17. Let G be a graph with n vertices where $\mathrm{n} \geq 2$. Then prove that G has at least two vertices which are not cut vertices.
18. Prove that a connected graph G has an Euler tour if and only if it has at most two odd vertices.
19. Prove that a simple graph G is Hamiltonian if and only if its closure $C(G)$ is Hamiltonian.
20. Prove that every tournament T has a directed Hamiltonian path.

Answer any 3 of the following. Wt : 3 each.
21. Let G be a non-empty graph with at least two vertices. Then prove that G is bipartite if and only if it has no odd cycle.
22. Let e be an edge of the graph G and let $\mathrm{G}-\mathrm{e}$ be the subgraph obtained by deleting e, then prove that $W(G) \leq W(G-e) \leq W(G)+1$.
23. Let G be a simple graph with atleast 3 vertices. Then prove that G is 2-connected if and only if for each pair of distinct vertices u and v of G, there are two internally disjoint u-v paths in G.
24. If G is a simple graph with n vertices where $n \geq 3$ and the degree $d(V) \geq n / 2$ for every vertex V of G , then prove that G is Hamiltonian.
25. Let D be a weakly connected digraph with atleast one arc. Then prove that D is Euler if and only if $\operatorname{od}(\mathrm{V})=\mathrm{id}(\mathrm{V})$ for every vertex V of D .

