M 9815

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CCSS-Reg./Supple./Imp.) Examination, November 2015 CORE COURSE IN MATHEMATICS
 5B 09 MAT : Differential Equations and Numerical Analysis

Time: 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
a) Characteristic equation of $a y^{\prime \prime}+\mathrm{by}^{\prime}+\mathrm{cy}=0$ is \qquad
b) If the roots of the characteristic equation of ay" ${ }^{\prime \prime}+\mathrm{by}^{\prime}+\mathrm{cy}=0$ is real and repeated, say $\lambda=3,3$, then the general solution is \qquad
c) Wronskian of $e^{-2 t}$ and $e^{-3 t}$ is \qquad
d) Two functions $f(t)$ and $g(t)$ are said to be linearly dependent if \qquad
(Weightage 1)
Answer any six from the following: (Weightage 1 each)
2. Determine the order of the equation $u_{x x}+u_{y y}+u u_{x}+u u_{y}+u=0$. Also state whether the equation is linear or non-linear.
3. Solve $\frac{d y}{d t}=a y-b, y(0)=y_{0}$.
4. Find the general solution of $y^{\prime \prime}+9 y=0$.
5. Find the Wronskian of the vectors $x^{(1)}(t)=\binom{e^{t}}{e^{t}}$ and $x^{(2)}(t)=\binom{t^{2}}{2 t}$.
6. Solve the boundary value problem $y^{\prime \prime}+y=0, y(0)=1, y(\pi)=a$.
7. Explain one dimensional heat equation.
P.t.O.
8. Using Newton-Raphson method, find the positive solution of $2 \sin x=x$.
9. What do you mean by backward differences ? State Newton's backward interpolation formula.
10. Apply Euler's method to solve the initial value problem $y^{\prime}=x+y, y(0)=0$ to find $y(0.1)$ and $y(0.2)$. Take $h=0.1$.
(Weightage : 6×1=6)
Answer any seven from the following : (Weightage 2 each)
11. Determine the value of r for which the differential equation $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=0$ has solution of the form $y=t^{r}, r>0$.
12. Solve $\frac{d y}{d t}+\frac{1}{2} y=2+t$.
13. Given that $y_{1}(t)=t^{-1}$ is a solution of $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t>0$. Find a second linearly independent solution.
14. Find the particular integral of $y^{\prime \prime}-3 y^{\prime}-4 y=-8 e^{t} \cos 2 t$.
15. Find the solution of the initial value problem $y^{\prime \prime}+4 y=3 \sin 2 t, y(0)=2, y^{\prime}(0)=-1$.
16. Using the method of separation of variables, solve Laplace's equation.
17. Consider a elastic string of length 30 cm that satisfies the wave equation $4 u_{x x}=u_{t t}, 0<t<30, t>0$. Assume that the ends of the strings are fixed and the string is set in motion with no initial velocity from the initial position.
$u(x, 0)= \begin{cases}x / 10 & 0 \leq x \leq 10 \\ (30-x) / 20 & 10<x \leq 30\end{cases}$
Find the displacement $u(x . t)$ of the string.
18. Using Gauss elimination method, solve the equations
$x+2 y-z=3 ; 3 x-y+2 z=1 ; 2 x-2 y+3 z=2$ and $x-y+z=-1$.
19. Using Simpson's rule evaluate $\int_{0}^{6} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by dividing the interval into 10 sub-intervals.
20. Using Picard's process of successive approximation, obtain the value of $y(0.1)$ from the equation $\frac{d y}{d x}=x-y^{2}, y(0)=1$.
(Weightage : 7×2=14)
Answer any three from the following : (Weightage 3 each)
21. Solve the initial value problem $\frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2(y-1)}, y(0)=-1$ and determine the interval in which the solution exist.
22. Find an integrating factor for the equation and solve $\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0$.
23. Using method of variation of parameters, solve $y^{\prime \prime}+2 y^{\prime}+y=3 e^{-t}$.
24. Given that the values :

x :	5	7	11	13	17
$f(x):$	150	392	1452	2366	5202

Evaluate $f(9)$ using Newton's divided difference formula.
25. Using Runge-Kutta method of fourth order, solve $\frac{d y}{d x}=x+y$ with $y=1$, where $x=0$ at $x=0.2$ and $x=0.4$
(Weightage : $3 \times 3=9$)

