

M 9815

Reg. No.	:	******
----------	---	--------

Name :

V Semester B.Sc. Degree (CCSS-Reg./Supple./Imp.) Examination, November 2015 CORE COURSE IN MATHEMATICS 5B 09 MAT : Differential Equations and Numerical Analysis

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
 - a) Characteristic equation of ay" + by' + cy = 0 is ____
 - b) If the roots of the characteristic equation of ay'' + by' + cy = 0 is real and repeated, say $\lambda = 3, 3$, then the general solution is _____
 - c) Wronskian of e^{-2t} and e^{-3t} is _____
 - d) Two functions f(t) and g(t) are said to be linearly dependent if _____

(Weightage 1)

Answer any six from the following : (Weightage 1 each)

- 2. Determine the order of the equation $u_{xx} + u_{yy} + uu_x + uu_y + u = 0$. Also state whether the equation is linear or non-linear.
- 3. Solve $\frac{dy}{dt} = ay b$, $y(0) = y_0$.
- 4. Find the general solution of y'' + 9y = 0.

5. Find the Wronskian of the vectors
$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} \mathbf{e}^t \\ \mathbf{e}^t \end{pmatrix}$$
 and $\mathbf{x}^{(2)}(t) = \begin{pmatrix} t^2 \\ 2t \end{pmatrix}$.

- 6. Solve the boundary value problem y'' + y = 0, y(0) = 1, $y(\pi) = a$.
- 7. Explain one dimensional heat equation.

- 8. Using Newton-Raphson method, find the positive solution of $2 \sin x = x$.
- 9. What do you mean by backward differences ? State Newton's backward interpolation formula.
- 10. Apply Euler's method to solve the initial value problem y' = x + y, y(0) = 0 to find y(0.1) and y(0.2). Take h = 0.1. (Weightage : 6×1=6)

Answer any seven from the following : (Weightage 2 each)

- 11. Determine the value of r for which the differential equation $t^2y'' 4ty' + 4y = 0$ has solution of the form $y = t^r$, r > 0.
- 12. Solve $\frac{dy}{dt} + \frac{1}{2}y = 2 + t$.
- 13. Given that $y_1(t) = t^{-1}$ is a solution of $2t^2y'' + 3ty' y = 0$, t > 0. Find a second linearly independent solution.
- 14. Find the particular integral of $y'' 3y' 4y = -8e^t \cos 2t$.
- 15. Find the solution of the initial value problem $y'' + 4y = 3\sin 2t$, y(0) = 2, y'(0) = -1.
- 16. Using the method of separation of variables, solve Laplace's equation.
- 17. Consider a elastic string of length 30 cm that satisfies the wave equation $4u_{xx} = u_{tt}$, 0 < t < 30, t > 0. Assume that the ends of the strings are fixed and the string is set in motion with no initial velocity from the initial position.

$$u(x, 0) = \begin{cases} x/10 & 0 \le x \le 10 \\ (30-x)/20 & 10 < x \le 30 \end{cases}$$

Find the displacement u(x.t) of the string.

- 18. Using Gauss elimination method, solve the equations x + 2y z = 3; 3x y + 2z = 1; 2x 2y + 3z = 2 and x y + z = -1.
- 19. Using Simpson's rule evaluate $\int_{0}^{6} \frac{dx}{1+x^{2}}$ by dividing the interval into 10 sub-intervals.

20. Using Picard's process of successive approximation, obtain the value of y(0.1) from the equation $\frac{dy}{dx} = x - y^2$, y(0) = 1. (Weightage : 7×2=14)

Answer any three from the following : (Weightage 3 each)

- 21. Solve the initial value problem $\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}$, y(0) = -1 and determine the interval in which the solution exist.
- 22. Find an integrating factor for the equation and solve $(3xy + y^2) + (x^2 + xy)y' = 0$.
- 23. Using method of variation of parameters, solve $y'' + 2y' + y = 3e^{-t}$.
- 24. Given that the values :

x :	5	7	11	13	17
f(x) :	150	392	1452	2366	5202

Evaluate f(9) using Newton's divided difference formula.

25. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = x + y$ with y = 1, where x = 0 at x = 0.2 and x = 0.4 (Weightage : 3×3=9)