

Reg.	No	. :	
Name	e :		

V Semester B.Sc. Degree (CCSS-Reg./Supple./Imp.) Examination, November 2015 CORE COURSE IN MATHEMATICS 5B07 MAT : Abstract Algebra

Time: 3 Hours

Max. Weightage: 30

- 1. Mark each of the following true or false.
 - a) If * is any commutative binary operation on any set S, then a * (b * c) = (b * c) * a for all a, b, c ∈ S.
 - b) A binary operation on a set S assigns exactly one element of S to each ordered pair of elements of S.
 - c) Every abelian group is cyclic.
 - d) Every cyclic group has a unique generator.

Answer any six questions from the following (weightage one each).

- 2. If * is defined on \mathbb{Q}^+ , the set of all positive rationals, by $a * b = \frac{ab}{2}$, show that $(\mathbb{Q}^+, *)$ is a group.
- If G is a group with binary operation *, prove that (a * b)'=b'*a', where a' is the inverse of a.
- 4. If A is any set and σ is a permutation of A, show that the relation '~' defined A by a ~b if and only if $b = \sigma^n(a)$, for some $n \in \mathbb{Z}$, $a, b \in A$, is an equivalence relation.
- 5. Write the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix}$ as a product of cycles.
- 6. Prove that every group of prime order is cyclic.

(W=1)

- 7. If H is a normal subgroup of a group G, show that the cosets of H in G forms a group under the binary operation (aH) (bH) = (ab) H.
- 8. Prove that a factor group of a cyclic-group is cyclic.
- 9. Define a ring homomorphism. Check whether $\phi : \mathbb{Z} \to \mathbb{Z}$ defined by $\phi(x) = 2(x)$ is a ring homomorphism.
- 10. What is the remainder when 8¹⁰³ is divided by 13?
- 11. Define the characteristic of a ring. Obtain the characteristics of the rings \mathbb{Z}_n , \mathbb{Z} , Q and IR. (W=6×1=6)

Answer any seven questions from the following (weightage two each).

- 12. If G is a group binary operation *, show that (a*b)'=a'*b' if and only if a*b = b*a, for a, b, ∈ G, where a' is the inverse of a.
- 13. Prove that the intersection of two-subgroups H and K of a group G is a subgroup of G.
- 14. If G is a group and $a \in G$, show that $H = \{a^n/n \in \mathbb{Z}\}$ is the smallest subgroup of G that contains 'a'.
- If H is a subgroup of a finite group G, prove that order of H is a divisor of order of G. Also prove that order of an element of a finite group divides the order of the group.
- 16. Obtain the group of symmetries of a square with vertices 1, 2, 3 and 4.
- 17. Define a homomorphism of a group G into a group G'. If $\varphi: G \rightarrow G'$ is a homomorphism of a group G on to a group G' and G is abelian, show that G' is also abelian.
- 18. If the map $\gamma : \mathbb{Z} \to \mathbb{Z}_n$ is difined by γ (m) = r, where r is the remainder given by the division algorithm when m is divided by n, show that γ is a homomorphism.

- 19. If $\phi: G \to G'$ is a group homomorphism with Ker $\phi = H$, prove that the set $\phi^{-1}[\{\phi(a)\}] = \{x \in G/\phi(x) = \phi(a)\}$ is the left coset aH of H.
- 20. Prove that the divisors of zero in \mathbb{Z}_n are precisely those elements that are not relatively prime to n.
- 21. If R is a ring with units and if $n.1 \neq 0$ for all $n \in \mathbb{Z}^+$, prove that R has characteristic zero. If n.1 = 0, for some $n \in \mathbb{Z}^+$, prove that the characteristic of R is the smallest such n. (W=7×2=14)

Answer any three questions from the following (weightage 3 each).

- 22. If G is a cyclic group with n elements and 'a' is a generator of G, prove that $b = a^s \in G$ generates a cyclic subgroup H of G containing n_d elements, where d is the g.c.d. of n and s.
- 23. Show that every group is isomorphic to a group of permutations.
- 24. Prove that the collection of all even permutations of $\{1, 2, ..., n\}$, $n \ge 2$, forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_n .
- 25. Prove that a subgroup H of a group G is a normal subgroup if and only if gH = Hg for all $g \in G$.
- 26. Show that the set G_n of non zero elements of \mathbb{Z}_n that are not zero divisors forms group under multiplication modulo n. (W=3×3=9)