Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CCSS-Reg./Supple./Imp.)
 Examination, November 2015 CORE COURSE IN MATHEMATICS
 5B07 MAT : Abstract Algebra

Time : 3 Hours
Max. Weightage : 30

1. Mark each of the following true or false.
a) If $*$ is any commutative binary operation on any set S , then $\mathrm{a} *(\mathrm{~b} * \mathrm{c})=(\mathrm{b} * \mathrm{c}) * \mathrm{a}$ for all $a, b, c \in S$.
b) A binary operation on a set S assigns exactly one element of S to each ordered pair of elements of S.
c) Every abelian group is cyclic.
d) Every cyclic group has a unique generator.

Answer any six questions from the following (weightage one each).
2. If $*$ is defined on \mathbb{Q}^{+}, the set of all positive rationals, by $a * b=\frac{a b}{2}$, show that $\left(\mathbb{Q}^{+}, *\right)$ is a group.
3. If G is a group with binary operation *, prove that $(\mathrm{a} * \mathrm{~b})^{\prime}=\mathrm{b}^{\prime *} \mathrm{a}^{\prime}$, where a^{\prime} is the inverse of a.
4. If A is any set and σ is a permutation of A, show that the relation ' \sim ' defined A by $a \sim b$ if and only if $b=\sigma^{n}(a)$, for some $n \in \mathbb{Z}, a, b \in A$, is an equivalence relation.
5. Write the permutation $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2\end{array}\right)$ as a product of cycles.
6. Prove that every group of prime order is cyclic.
P.T.O.
7. If H is a normal subgroup of a group G , show that the cosets of H in G forms a group under the binary operation $(\mathrm{aH})(\mathrm{bH})=(\mathrm{ab}) \mathrm{H}$.
8. Prove that a factor group of a cyclic-group is cyclic.
9. Define a ring homomorphism. Check whether $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\varphi(x)=2(x)$ is a ring homomorphism.
10. What is the remainder when 8^{103} is divided by 13 ?
11. Define the characteristic of a ring. Obtain the characteristics of the rings $\mathbb{Z}_{n}, \mathbb{Z}$, \mathbb{Q} and \mathbb{R}. .
(W=6×1=6)
Answer any seven questions from the following (weightage two each).
12. If G is a group binary operation *, show that $(\mathrm{a} * \mathrm{~b})^{\prime}=\mathrm{a}^{\prime *} \mathrm{~b}^{\prime}$ if and only if $a * b=b * a$, for $a, b, \in G$, where a^{\prime} is the inverse of a.
13. Prove that the intersection of two-subgroups H and K of a group G is a subgroup of G.
14. If G is a group and $a \in G$, show that $H=\left\{a^{n} / n \in \mathbb{Z}\right\}$ is the smallest subgroup of G that contains ' a '.
15. If H is a subgroup of a finite group G , prove that order of H is a divisor of order of G. Also prove that order of an element of a finite group divides the order of the group.
16. Obtain the group of symmetries of a square with vertices $1,2,3$ and 4 .
17. Define a homomorphism of a group G into a group G^{\prime}. If $\varphi: G \rightarrow G^{\prime}$ is a homomorphism of a group G on to a group G^{\prime} and G is abelian, show that G^{\prime} is also abelian.
18. If the map $\gamma: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ is difined by $\gamma(m)=r$, where r is the remainder given by the division algorithm when m is divided by n , show that γ is a homomorphism.
19. If $\varphi: G \rightarrow G^{\prime}$ is a group homomorphism with $\operatorname{Ker} \varphi=H$, prove that the set $\varphi^{-1}[\{\varphi(\mathrm{a})\}]=\{\mathrm{x} \in \mathrm{G} / \varphi(\mathrm{x})=\varphi(\mathrm{a})\}$ is the left coset aH of H.
20. Prove that the divisors of zero in \mathbb{Z}_{n} are precisely those elements that are not relatively prime to n.
21. If R is a ring with units and if $n .1 \neq 0$ for all $n \in \mathbb{Z}^{+}$, prove that R has characteristic zero. If $n .1=0$, for some $n \in \mathbb{Z}^{+}$, prove that the characteristic of R is the smallest such n.
(W=7×2=14)
Answer any three questions from the following (weightage 3 each).
22. If G is a cyclic group with n elements and ' a ' is a generator of G, prove that $b=a^{s} \in G$ generates a cyclic subgroup H of G containing n / d elements, where d is the g.c.d. of n and s.
23. Show that every group is isomorphic to a group of permutations.
24. Prove that the collection of all even permutations of $\{1,2, \ldots, n\}, n \geq 2$, forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_{n}.
25. Prove that a subgroup H of a group G is a normal subgroup if and only if $\mathrm{gH}=\mathrm{Hg}$ for all $g \in G$.
26. Show that the set G_{n} of non zero elements of \mathbb{Z}_{n} that are not zero divisors forms group under multiplication modulo n.
(W=3×3=9)

