Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (CCSS - Reg./Supple./Imp.)
 Examination, November 2014 CORE COURSE IN MATHEMATICS 5B05 MAT : Vector Analysis

Time : 3 Hours

1. Fill in the blanks :
a) Midpoint of the line segment joining points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is
b) Vector equation of the line through $\mathrm{P}_{0}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ and parallel to $\overrightarrow{\mathrm{v}}$ is
c) If \vec{r} is the position vector of a particle moving along a smooth curve in space, then velocity vector at any time t is \qquad
d) The curvature of a straight line is \qquad (Weightage 1)
Answer any six from the following (weightage 1 each) :
2. Find the angle between $\vec{a}=\hat{i}-2 \hat{j}-2 \hat{k}$ and $\vec{b}=6 \hat{i}+3 \hat{j}+2 \hat{k}$.
3. Find the Cartesian equation for the surface $z=r^{2}$ and identity the surface.
4. If $f(x, y)=y \sin x y$, find $\frac{\partial f}{\partial y}$.
5. Find $\frac{d y}{d x}$ if $x^{2}+\sin y-2 y=0$.
6. Define gradient of a scalar field.
7. Evaluate $\iint_{R}\left(1-6 x^{2} y\right) d x d y$ where R is the region between $x=0, x=2, y=-1$ and $y=1$.
8. Evaluate $\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} d z d y d x$.
9. Find the divergence of $\vec{F}=\left(x^{2}-y\right) \hat{i}+\left(x y-y^{2}\right) \hat{j}$.
10. State Green's theorem in plane.

Answer any seven from the following (weightage 2 each) :
11. Find parametric equations for the line through $(-3,2,-3)$ and $(1,-1,4)$.
12. Find a vector perpendicular to the plane of $P(1,-1,0), Q(2,1,-1)$ and $R(-1,1,2)$.
13. Find the length of one turn of the helix $\vec{f}(t)=\cos t \hat{i}+\sin t \hat{j}+t \hat{k}$.
14. Show that the function $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}$ has no limit as (x, y) approaches $(0,0)$.
15. Find the linearization of $f(x, y, z)=x^{2}-x y+3 \sin z$ at the point $(2,1,0)$.
16. Find the derivative of $f(x, y)=x^{2}+x y$ at $(1,2)$ in the direction of the vector $\hat{i}+\hat{j}$.
17. Change the order of integration and hence evaluate $\int_{0}^{2} \int_{x^{2}}^{2 x}(4 x+2) d y d x$.
18. Find the polar moment of inertia about the origin of a thin plate of density $\delta(x, y)=1$ bounded by the quarter circle $x^{2}+y^{2}=1$ in the first quadrant.
19. Show that $\vec{F}=(y \sin z) \hat{i}+(x \sin z) \hat{j}+(x y \cos z) \hat{k}$ is conservative and find a potential for it.
20. Find a parametrization of the cylinder $x^{2}+(y-3)^{2}=9,0 \leq z \leq 5$.
(Weightage $7 \times 2=14$)
Answer any three from the following (weightage 3 each) :
21. Find the local extreme values of the function $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$.
22. Find the volume of the region D enclosed by the surfaces
$z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
23. Evaluate

$$
\int_{0}^{3} \int_{0}^{4} \int_{x=y / 2}^{x=(y / 2)+1}\left(\frac{2 x-y}{2}+\frac{z}{3}\right) d x d y d z
$$

by applying the transformation $u=\frac{2 x-y}{2}, v=\frac{y}{2}, w=\frac{z}{3}$.
24. Find the circulation of the field $\vec{F}=\left(x^{2}-y\right) \hat{i}+4 z \hat{j}+x^{2} \hat{k}$ around the curve C in which the plane $z=2$ meets the cone $z=\sqrt{x^{2}+y^{2}}$ counterclockwise as viewed from above.
25. Verify divergence theorem for $\vec{F}=x \hat{i}+y \hat{j}+z \hat{k}$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

