Reg. No.: \qquad
Name: \qquad

V Semester B.Sc. Degree (CCSS - Reg./Supple./Imp.)
 Examination, November 2014 CORE COURSE IN MATHEMATICS

 5B06 MAT : Real Analysis

 5B06 MAT : Real Analysis}

Time: 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
a) The set of all $x \in \mathbb{R}$ that satisfy $|4 x-5| \leq 3$ is \qquad
b) The ε-neighbourhood of $a \in \mathbb{R}$ is \qquad
c) $\operatorname{Sup}\left\{1-\frac{(-1)^{n}}{\mathrm{n}}: n \in \mathbb{N}\right\}=$
d) Every nonempty subset of \mathbb{R} that has \qquad has a supremum in \mathbb{R}. (Wt. 1) Answer any six questions from the following (weightage one each):
2. If a is a real number such that $0 \leq a<\varepsilon$ for $\varepsilon>0$, then show that $a=0$.
3. State and prove the triangle inequality.
4. Prove that a sequence in \mathbb{R} can have at most one limit.
5. Using the definition of limit of a sequences prove that $\lim \left(\frac{3 n+2}{n+1}\right)=3$.
6. If $X=\left(x_{n}\right), Y=\left(y_{n}\right)$ and $Z=\left(z_{n}\right)$ are sequences of real numbers such that $x_{n} \leq y_{n} \leq z_{n}$ for all $n \in N$ and if $\lim \left(x_{n}\right)=\lim \left(z_{n}\right)$, show that $Y=\left(y_{n}\right)$ is convergent and $\lim \left(x_{n}\right)=\lim \left(y_{n}\right)=\lim \left(z_{n}\right)$.
P.T.O.
7. Prove that any convergent sequence of real numbers is a Cauchy sequence.
8. Prove that any absolutely convergent series in \mathbb{R} is convergent.
9. If I is an interval, $\mathrm{f}: \mathrm{I} \rightarrow \mathbb{R}$ is continuous on I and if $\mathrm{f}(\mathrm{a})<\mathrm{k}<\mathrm{f}(\mathrm{b})$, where $\mathrm{a}, \mathrm{b} \in \mathrm{I}$, $k \in \mathbb{R}$, then show that there exists a point $c \in I$ between ' a ' and ' b ' such that $f(c)=k$.
10. If $f: A \rightarrow \mathbb{R}$, where $A \subseteq \mathbb{R}$, is a Lipschitz function, prove that f is uniformly continuous.

Answer any seven questions from the following (weightage 2 each) :
11. If $x \in \mathbb{R}$, show that there exists some $n_{x} \in \mathbb{N}$ such that $x<n_{x}$.
12. Prove that the set $\{x \in \mathbb{R}: 0 \leq x \leq 1\}$ is not countable.
13. If $X=\left(x_{n}: n \in \mathbb{N}\right)$ is a sequence of real numbers and $m \in \mathbb{N}$, prove that the m-tail $X_{m}=\left(x_{m+n}: n \in N\right)$ converges if and only if X converges.
14. Prove that a convergent sequence is bounded.
15. Prove that the sequence $\left((-1)^{n}\right)$ is divergent.
16. Show that the series $\sum_{n=1}^{\infty} 1 / n^{p}$ is convergent when $p>1$.
17. If $X=\left(x_{n}\right)$ is a decreasing sequence with $\lim \left(x_{n}\right)=0$ and if the partial sums $\left(S_{n}\right)$ of Σy_{n} are bounded, prove that the series $\Sigma x_{n} y_{n}$ converges.
18. If $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$ is a closed bounded interval and if $f: \mathrm{I} \rightarrow \mathbb{R}$ is continuous on I , prove that f is bounded on I.
19. If $f: I \rightarrow \mathbb{R}$ is continuous on I, where I is an interval, show that $f(I)$ is an interval.
20. If $\mathrm{f}: \mathrm{I} \rightarrow \mathbb{R}$ is increasing on I , where $\mathrm{I} \leq \mathbb{R}$ is an interval, prove that

$$
\lim _{x \rightarrow c^{-}} f=\sup \{f(x): x \in I, x<c\},
$$

where $\mathrm{c} \in \mathrm{I}$ is not an end point of I .
Answer any three questions from the following (Weightage $\mathbf{3}$ each) :
21. Show that there exists a positive real number x such that $x^{2}=2$.
22. If S is a subset of \mathbb{R} that contains at least two points and has the property that $[x, y] \subseteq S$ whenever $x, y \in S$ with $x<y$, prove that S is an interval.
23. Prove that a monotone sequence of real numbers is convergent if and only if it is bounded.
24. If $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$ is a closed bounded interval that if $\mathrm{f}: \mathrm{I} \rightarrow \mathbb{R}$ is continuous on I , prove that f has an absolute maximum and an absolute minimum on I.
25. State and prove the continuous inverse theorem.

