M 7152

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CCSS - Reg./Supple./Imp.) Examination, November 2014 CORE COURSE IN MATHEMATICS

5B09 MAT : Differential Equations and Numerical Analysis

Time : 3 Hours

Max. Weightage : 30

1. Fill in the blanks :
a) Characteristic equation of $y^{\prime \prime}-y^{\prime}+y=0$ is \qquad
b) If $\lambda=2$ and $\lambda=3$ are the roots of the characteristic equation of $a y^{\prime \prime}+b y^{\prime}+c y=0$, then the general solution is \qquad
c) If Wronskian of $y_{1}(t)$ and $y_{2}(t)$ is zero, then $y_{1}(t)$ and $y_{2}(t)$ are \qquad
d) The equation $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$ is exact if \qquad
(Weightage 1)
Answer any six from the following (Weightage 1 each) :
2. Determine the order of the equation $\frac{d^{2} y}{d t^{2}}+\sin (t+y)=\sin t$. Also state whether the equation is linear or non-linear.
3. Solve $\frac{d p}{d t}=0.5 p-150$.
4. Find the general solution of $y^{\prime \prime}+y^{\prime}+y=0$.
5. Find the Wronskian of the vectors $x^{(1)}(t)=\binom{t}{1}$ and $x^{(2)}(t)=\binom{t^{2}}{2 t}$.
6. Solve the boundary value problem $y^{\prime \prime}+2 y=0, y(0)=1, y(\pi)=0$.
7. Explain one dimensional wave equation.
8. Using Newton-Raphson method, find the square root of 2.
9. What do you mean by interpolation? State Newton's forward interpolation formula.
10. Apply Euler's method to solve the initial value problem $y^{\prime}=x+y, y(0)=0$ to find $y(0.2)$ and $y(0.4)$. Take $h=0.2$.
(Weightage : $6 \times 1=6$)
Answer any seven from the following (Weightage 2 each) :
11. Determine the value of r for which the differential equation $t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0$ has solution of the form $y=t^{r}, r>0$.
12. Solve the initial value problem $t y^{\prime}+2 y=4 t^{2}, y(1)=2$.
13. Show that $y_{1}(t)=t^{\frac{1}{2}}$ and $y_{2}(t)=t^{-1}$ form a fundamental set of solution of $2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0, t>0$.
14. Find the particular integral of $y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 t}$.
15. Find the solution of the initial value problem $y^{\prime \prime}+y^{\prime}-2 y=2 t, y(0)=0, y^{\prime}(0)=1$.
16. Using the method of separation of variables, solve one dimensional heat equation.
17. Find the solution $u(x, y)$ of Laplace's equation in the rectangle $0<x<a, 0<y<b$ satisfying the boundary conditions $u(0, y)=0, u(a, y)=0,0<y<b ; u(x, b)=0$, $u(x, 0)=x(a-x), 0<x<a$.
18. Using matrix inversion method, solve the equations $x+y+z=6 ; 3 x+y+z=8$; $2 x+2 y-3 z=-7$.
19. Using trapezoidal rule evaluate $\int_{0}^{1} e^{-x^{2}} d x$ by dividing the interval into 5 subintervals.
20. Using Picard's process of successive approximation, obtain a solution upto the fourth approximation from the equation $\frac{d y}{d x}=x+y, y(0)=1$. (Weightage : $7 \times 2=14$)

Answer any three from the following (Weightage 3 each) :
21. Solve the differential equation $\left(y \cos x+2 x e^{y}\right)+\left(\sin x+x^{2} e^{y}-1\right) y^{\prime}=0$.
22. Solve the initial value problem $y^{\prime}=2 t(1+y), y(0)=0$ by the method of successive approximation.
23. Using method of variation of parameters, solve $y^{\prime \prime}+4 y=\tan 2 t$.
24. Given that the values

$x:$	5	7	11	13	17
$f(x):$	150	392	1452	2366	5202

Evaluate $f(9)$ using Lagrange's interpolation formula.
25. Using Runge-Kutta method of fourth order, find approximate values of $y(0.1)$ and $y(0.2)$ from $\frac{d y}{d x}=x+y^{2}$, given that $y(0)=1$.
(Weightage : $3 \times 3=9$)

