Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CCSS - Reg./Supple./Imp.) Examination, November 2014 CORE COURSE IN MATHEMATICS 5B07 MAT : Abstract Algebra

Time: 3 Hours
Max. Weightage : 30

1. Mark each of the following true or false:
a) A binary operation on a set S assigns at least one element of S to each ordered pair of elements of S .
b) In a group each linear equation has a solution.
c) Every cyclic group is abelian.
d) Any group of prime order is cyclic.

Answer any six questions from the following (Weightage one each) :
2. If $(a * b)^{2}=a^{2} * b^{2}$ for a and b in a group G, show that $a * b=b * a$, where $a^{2}=a * a$.
3. Prove that every cyclic group is abelian.
4. Obtain the group of symmetries of an equilateral triangle with vertices 1,2 and 3 .
5. Write the permutation $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2\end{array}\right)$ as a product of cycles.
6. If G is a group and H is a subgroup of G , prove that the relation ' \sim ' defined on G by $\mathrm{a} \sim \mathrm{b}$ if and only if $\mathrm{a}^{-1} \mathrm{~b} \in \mathrm{H}$ is an equivalence relation.
7. If $\varphi: G \rightarrow G^{\prime}$ is a group homomorphism, show that $\operatorname{Ker} \varphi$ is a normal subgroup of G.
8. Prove that a factor group of a cyclic group is cyclic.
9. Define a ring homomorphism. Check whether $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\varphi(x)=2 x$ is a ring homomorphism.
10. Solve the equation $x^{2}-5 x+6=0$ in \mathbb{Z}_{12}.
11. Show that \mathbb{Z}_{p} has no zero divisors if p is a prime.

Answer any seven questions from the following (Weightage 2 each) :
12. In a group G , prove that there is only one identity element and also prove that the inverse of every element is unique.
13. Prove that the intersection of two subgroups H and K of a group G is a subgroup of G.
14. If G is a group and $a \in G$, show that $H=\left\{a^{n} / n \in \mathbb{Z}\right\}$ is the smallest subgroup of G that contains ' a '.
15. If H is a subgroup of a finite group G , prove that order of H is a divisor of order of G. Also prove that the order of an element of a finite group divides the order of the group.
16. If A is a nonempty set and S_{A} is the collection of all permutations of A, prove that S_{A} is a group under permutation multiplication.
17. Define a homomorphism of a group G into a group G^{\prime}. If $\varphi: G \rightarrow G^{\prime}$ is a homomorphism of a group G onto a group G^{\prime} and G is abelian, show that G^{\prime} is also abelian.
18. Show that the mapping $\varphi: S_{n} \rightarrow \mathbb{Z}_{2}$ defined by
$\varphi(\sigma)=\left\{\begin{array}{l}0 \text { if } \sigma \text { is an even permutation } \\ 1 \text { if } \sigma \text { is an odd permutation }\end{array}\right.$ is a homomorphism, where S_{n} is the symmetric group of n letters and $\sigma \in \mathrm{S}_{\mathrm{n}}$.
19. Prove that a group homomorphism $\varphi: G \rightarrow G^{\prime}$ is a one-to-one map if and only if $\operatorname{Ker} \varphi=\{\mathrm{e}\}$, where e is the identity element of G .
20. Prove that the cancellation law hold in a ring R if and only if R has no zero divisors.
21. Show that every field is an integral domain.

Answer any three questions from the following (Weightage 3 each) :
22. Prove that a subgroup of a cyclic group is cyclic.
23. Show that every group is isomorphic to a group of permutations.
24. Prove that no permutation in S_{n} can be expressed both as a product of even number of transpositions and as a product of an odd number of transpositions.
25. If φ is a homomorphism from a group G into a group G^{\prime}, prove the following :
i) $\varphi(e)$ is the identity element of G^{\prime}, where e is the identity element of G .
ii) $\varphi\left(\mathrm{a}^{-1}\right)=\varphi(\mathrm{a})^{-1}, \mathrm{a} \in \mathrm{G}$
iii) $\varphi[\mathrm{H}]$ is a subgroup of G^{\prime}, where H is a subgroup of G .
iv) $\varphi^{-1}\left[K^{\prime}\right]$ is a subgroup of G, where K^{\prime} is a subgroup of G^{\prime}.
26. Show that every finite integral domain is a field.

