

M 4439

Reg.	No.	:	
Name	e : .		

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal-UI-Ulama Degree (CCSS – Reg./Sup./Imp.) Examination, November 2013 CORE COURSE IN MATHEMATICS 5 B05 MAT : Vector Analysis

Time : 3 Hours

Weightage: 30

- 1. Fill in the blanks :
 - a) The angle between two non zero vectors \vec{a} and \vec{b} is ______
 - b) If $f(x, y) = x^2 + 3xy + y 1$, then $\frac{\partial f}{\partial x}$ at (4, -5) is _____
 - c) Spherical form of volume element dV is ____
 - d) If \vec{F} is a conservative field in a region D, then the value of $\int \vec{F} \cdot d\vec{r}$ around every closed loop in D is ______ (Weightage 1)

Answer any six from the following. (Weightage 1 each)

- 2. If $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = -4\hat{i} + 3\hat{j} + \hat{k}$, find $\vec{a} \times \vec{b}$.
- 3. Find the equation for the circular cylinder $4x^2 + 4y^2 = 9$ in cylindrical coordinates.
- 4. If w = x sin y + y sin x + xy, verify that $w_{xy} = w_{yx}$.
- 5. Using chain rule, find the derivative of w = xy with respect to t along the path $x = \cos t$, $y = \sin t$.
- 6. Find the plane tangent to the surface $z = x \cos y ye^x$ at (0, 0, 0).

M 4439

- 7. Find the area enclosed by the lemniscate $r^2 = 4 \cos 2\theta$.
- 8. Find the average height of the paraboloid $z = x^2 + y^2$ over the square $0 \le x \le 2$, $0 \le y \le 2$.
- 9. Find the gradient field of $\phi = ln \sqrt{x^2 + y^2 + z^2}$.
- 10. State Stoke's theorem.

(Weightage 6×1=6)

Answer any seven from the following. (Weightage 2 each)

- 11. Find the centre and radius of the sphere $x^2 + y^2 + z^2 + 3x 4z + 1 = 0$.
- 12. Find the distance from (1, 1, 3) to the plane 3x + 2y + 6z = 6.
- 13. Find the torsion of the helix $\vec{r}(t) = a \cos t \hat{i} + a \sin t \hat{j} + bt \hat{k}$, $a, b \ge 0$, $a^2 + b^2 \ne 0$.
- 14. Find the derivative of $f(x, y, z) = x^3 xy^2 z$ at P(1, 1, 0) in the direction of $2\hat{i} 3\hat{j} + 6\hat{k}$.
- 15. Find the linearization of $f(x, y, z) = x^2 xy + 3 \sin z$ at the point (2, 1, 0).
- 16. The surfaces $f(x, y, z) = x^2 + y^2 2 = 0$ and g(x, y, z) = x + z 4 = 0 meet in an ellipse E. Find the parametric equations for the line tangent to E at the point (1, 1, 3).

17. Change the integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$ into an equivalent polar integral and hence evaluate it.

- 18. Find the average value of x + y z over the rectangular solid in the first octant bounded by the coordinate planes and the planes x = 1, y = 1 and z = 2.
- 19. Find the work done by $\vec{F} = (y x^2)\hat{i} + (z y^2)\hat{j} + (x z^2)\hat{k}$ over the curve $\vec{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}, 0 \le t \le 1$, from (0, 0, 0) to (1, 1, 1).
- 20. Find the surface area of the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$. (Weightage 7×2=14)

Answer any three from the following. (Weightage 3 each)

- 21. Find the maximum and minimum values of f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$.
- 22. Find the volume of the region D enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.

23. Evaluate : $\int_{0}^{4} \int_{x=y/2}^{x=(y/2)+1} \frac{2x-y}{2} dx dy$ by applying the transformation

$$u=\frac{2x-y}{2}, v=\frac{y}{2}.$$

- 24. Find the flux of $\vec{F} = yz\hat{i} + x\hat{j} z^2\hat{k}$ outward through the parabolic cylinder $y = x^2$, $0 \le x \le 1$, $0 \le z \le 4$.
- 25. Verify Green's theorem in the plane for $\int_{C} (xy \, dx + x^2 dy)$ where C is the curve enclosing the region bounded by the parabola $y = x^2$ and the line y = x. (Weightage 3×3=9)