Reg. No. : \qquad
Name: \qquad

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal-UI-Ulama Degree (CCSS - Reg./Sup./Imp.)
 Examination, November 2013 CORE COURSE IN MATHEMATICS
 5 B05 MAT : Vector Analysis

Time: 3 Hours
Weightage : 30

1. Fill in the blanks :
a) The angle between two non zero vectors \vec{a} and \vec{b} is \qquad
b) If $f(x, y)=x^{2}+3 x y+y-1$, then $\frac{\partial f}{\partial x}$ at $(4,-5)$ is
c) Spherical form of volume element $d V$ is \qquad
d) If \vec{F} is a conservative field in a region D, then the value of $\int \vec{F} \cdot d \vec{r}$ around every closed loop in D is \qquad (Weightage 1)
Answer any six from the following. (Weightage 1 each)
2. If $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=-4 \hat{i}+3 \hat{j}+\hat{k}$, find $\vec{a} \times \vec{b}$.
3. Find the equation for the circular cylinder $4 x^{2}+4 y^{2}=9$ in cylindrical coordinates.
4. If $w=x \sin y+y \sin x+x y$, verify that $w_{x y}=w_{y x}$.
5. Using chain rule, find the derivative of $w=x y$ with respect to t along the path $x=\cos t, y=\sin t$.
6. Find the plane tangent to the surface $z=x \cos y-y e^{x}$ at $(0,0,0)$.
7. Find the area enclosed by the lemniscate $r^{2}=4 \cos 2 \theta$.
8. Find the average height of the paraboloid $z=x^{2}+y^{2}$ over the square $0 \leq x \leq 2$, $0 \leq y \leq 2$.
9. Find the gradient field of $\phi=\ln \sqrt{x^{2}+y^{2}+z^{2}}$.
10. State Stoke's theorem.
(Weightage $6 \times 1=6$)
Answer any seven from the following. (Weightage 2 each)
11. Find the centre and radius of the sphere $x^{2}+y^{2}+z^{2}+3 x-4 z+1=0$.
12. Find the distance from $(1,1,3)$ to the plane $3 x+2 y+6 z=6$.
13. Find the torsion of the helix $\vec{r}(t)=a \cos t \hat{i}+a \sin t \hat{j}+b t \hat{k}, a, b \geq 0, a^{2}+b^{2} \neq 0$.
14. Find the derivative of $f(x, y, z)=x^{3}-x y^{2}-z$ at $P(1,1,0)$ in the direction of $2 \hat{i}-3 \hat{j}+6 \hat{k}$.
15. Find the linearization of $f(x, y, z)=x^{2}-x y+3 \sin z$ at the point $(2,1,0)$.
16. The surfaces $f(x, y, z)=x^{2}+y^{2}-2=0$ and $g(x, y, z)=x+z-4=0$ meet in an ellipse E. Find the parametric equations for the line tangent to E at the point $(1,1,3)$.
17. Change the integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \mathrm{dy} \mathrm{dx}$ into an equivalent polar integral and hence evaluate it.
18. Find the average value of $x+y-z$ over the rectangular solid in the first octant bounded by the coordinate planes and the planes $x=1, y=1$ and $z=2$.
19. Find the work done by $\vec{F}=\left(y-x^{2}\right) \hat{i}+\left(z-y^{2}\right) \hat{j}+\left(x-z^{2}\right) \hat{k}$ over the curve $\vec{r}(t)=t \hat{i}+t^{2} \hat{j}+t^{3} \hat{k}, 0 \leq t \leq 1$, from $(0,0,0)$ to $(1,1,1)$.
20. Find the surface area of the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$.
(Weightage $7 \times 2=14$)

Answer any three from the following. (Weightage 3 each)

21. Find the maximum and minimum values of $f(x, y)=3 x+4 y$ on the circle

$$
x^{2}+y^{2}=1
$$

22. Find the volume of the region D enclosed by the surfaces $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
23. Evaluate : $\iint_{0}^{4} \int_{x=y / 2}^{x=(y / 2)+1} \frac{2 x-y}{2} d x d y$ by applying the transformation $u=\frac{2 x-y}{2}, v=\frac{y}{2}$.
24. Find the flux of $\vec{F}=y z \hat{i}+x \hat{j}-z^{2} \hat{k}$ outward through the parabolic cylinder $y=x^{2}, 0 \leq x \leq 1,0 \leq z \leq 4$.
25. Verify Green's theorem in the plane for $\int_{C}\left(x y d x+x^{2} d y\right)$ where C is the curve enclosing the region bounded by the parabola $y=x^{2}$ and the line $y=x$.
(Weightage $3 \times 3=9$)
