M 4442
Reg. No. : \qquad
Name: \qquad

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal-UI-Ulama Degree (CCSS - Reg./Supple./Improve.) Examination, November 2013 Core Course in Mathematics 5B08MAT : GRAPH THEORY

Time : 3 Hours Max. Weightage : 30

Instruction : Answer to all questions.
Fill in the blanks.

1. a) The complete bipartite graph $\mathrm{K}_{4,6}$ has \qquad number of edges.
b) The complete graph K_{4} has \qquad number of spanning trees.
c) The complete graph K_{4} has \qquad different Hamiltonian cycles.
d) The order of the incidence matrix $M(G)$ of a graph G with n vertices and t edges is ($4 x^{1 / 4}=1$ Wt.)

Answer any six from the following.
(Wt. 1 each)
2. When a simple graph G is S and to be self-complementary ? Give an example for a self complementary graph.
3. Draw the join of the graphs K_{2} and K_{3}.
4. Where an edge e of a graph G is said to be contracted ? Illustrate it with an example.
5. Define a maximal spanning tree.
6. Define Euler and Hamiltonian graphs.
7. Give an example of a matching in G which is maximum but not perfect.
8. When a digraph D is said to be K-regular ? Give an example for a 2 -regular digraph.
9. Draw a $(3,2)$ de Bruiju diagram and use it to construct a $(3,2)$ de Bruiju sequence.
10. Prove that if a tournament T is Hamiltonian then it is strongly connected.

Answer any seven of the following.
(Wt. 2 each)
11. Define the complement G of a simple graph G. Give an example for a selfcomplementary graph.
12. Find the radius and diameter of the Peterson graph.
13. Draw the graph having the following matrix $\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0\end{array}\right]$ as its adjacency matrix.
14. Let G be a connected graph. Then prove that G is a tree if and only if every edge of G is bridge.
15. Let G be a connected graph.
a) If G has 17 edges what is the maximum possible number of vertices in G ?
b) If G has 21 vertices what is the minimum possible number of edges in G ? Justify your answer.
16. Prove that a simple graph G is Hamiltonian iff its closure is Hamiltonian.
17. Prove that a connected graph G has an euler trail if and only if it has at most two odd vertices.
18. Prove that a matching M in a graph G is a maximum matching if and only if G contains no M -augmenting path.
19. Prove that every tournament T has a directed Hamiltonian path.
20. Prove that for each pair of positive integer n and k, both greater than one, the de Bruiju diagram Dn, k has a directed Euler tour.

Answer any three of the following
(Wt. 3 each)
21. Let G be a non empty graph with at least two vertices. Then prove that G is bipartite if and only if it has no odd cycles.
22. Let e be an edge of the graph G and as usual, let G -e be the subgraph obtained by deleting e. Then prove that $W(G) \leq W(G-e) \leq W(G)+1$.
23. Let G be a simple graph with at least three vertices. Then prove that G is 2-connected if and only if for each pair of distinct vertices u and v of G these are internally two disjoint u-v paths in G.
24. If G is a simple graph with n vertices, where $n \geq 3$ and the degree $d(v) \geq n / 2$ for every vertex V of G, then prove that G is Hamiltonian.
25. Prove that A graph G is orientable if and only if it is connected and has no bridges.

