

Reg. No. :

Name :

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal ul Ulama Degree (CCSS – Reg./Supple./Improv.) Examination, November 2013 Core Course in Mathematics 5B07 MAT : ABSTRACT ALGEBRA

Time : 3 Hours

Max. Weightage: 30

(Weightage 1)

- 1. Mark each of the following are true or false :
 - a) The set Z^+ under addition is a group.
 - b) Every group is a subgroup of itself.
 - c) A subgroup of a cyclic group is cyclic.
 - d) Q under addition is a cyclic group.

Answer any 6 from the following 9 questions :

(Weightage 1 each)

- Define a group. Let * be defined on R* of nonzero real numbers by letting a * b = a / b. Is R* a group under the operation *. Justify your answer.
- 3. Define a cyclic group. Find the number of generators of a cyclic group having the order 8.
- 4. Express the following permutation of {1, 2, 3, 4, 5, 67, 8} as a product of disjoints cycles and then as a product of transpositions.

- 5. Let H be a subgroup of a group G and let $a \in G$. Define the left and right cosets of H containing a . Exhibit all left and right cosets of the subgroup 4Z of Z.
- 6. Define a group homomorphism. Compute $\text{Ker}(\phi)$ and $\phi(18)$ for $\phi: Z \to Z_{10}$ such that $\phi(1) = 6$.
- 7. Determine the number of group homomorphisms from Z into Z_2 .

M 4441

- 8. Define the characteristic of a ring R. Find the characteristic of the ring $Z_6 \times Z_{15}$.
- 9. Define subring of a ring. Show that $2Z \cup 3Z$ is not a subring of Z.
- 10. Show that 1 and p -1 are the only elements of the field Z_p that are their own multiplicative inverse.

Answer any 7 from the following 10 questions

(Weightage 2 each)

- 11. Let G be an abelian group and let $c^n = c * c * ... * c$ for n factors, where $c \in G$ and $n \in Z^+$. Then prove that $(a * b)^n = a^n * b^n$ for all integers n.
- 12. Show that if $a \in G$, where G is a finite group with identity e, then there exists $n \in Z^+$ such that $a^n = e$.
- 13. Define a subgroup of a group G. Find all subgroups of Z_{12} .
- 14. Show that if H is a subgroup of index 2 in a finite group G, then every left coset of H is also a right coset of H.
- 15. Let G be group of order pq, where p and q are prime numbers. Show that every proper subgroup of G is cyclic.
- 16. Describe the center of every simple.
 - a) abelian group.
 - b) nonabelian group.
- 17. Define normal subgroup of a group G. Show that the center Z(G) of a group G is a normal subgroup of G.
- 18. Let $\phi : G \to G'$ be a group homomorphism and let N be a normal subgroup of G. Then show that $\phi[N]$ is normal subgroup of $\phi[G]$.

-3-

- 19. If p is a prime, then show that Z_p is a field.
- 20. State and prove the Little Theorem of Fermat.

Answer any 3 from the following 5 questions.

(Weightage 3 each)

- 21. Show that Z_p has no proper nontrivial subgroups if p is a prime number.
- 22. Show that the order of an element of a finite group divides the order of the group.
- 23. Prove that every group is isomorphic to a group of permutations.
- 24. Show that M is a maximal normal subgroup of G if and only if G/M is simple.
- 25. Show that the set G_n of nonzero elements of Z_n that are not 0 divisors forms a group under multiplication modulo n.