Reg. No. : \qquad
Name: \qquad

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal UI Ulama Degree (CCSS-Reg./Supple./Improv.) Examination, November 2012 CORE COURSE IN MATHEMATICS
 5B05 MAT : Vector Analysis

Time: 3 Hours
Max. Weightage: 30

1. Fill in the blanks :
a) Standard equation of a sphere of radius a and center $\left(x_{0}, y_{0}, z_{0}\right)$ is \qquad
b) If $f(x, y)=y \sin (x y)$, then $\frac{\partial f}{\partial y}=$ \qquad
c) Cylindrical form of volume element $d V$ is \qquad
d) Formula for the flux of a three dimensional vector field \vec{F} across an oriented surface S in the direction of \hat{n} is \qquad (Weightage 1)
Answer any six from the following. (Weightage 1 each) :
2. Write the relation between rectangular and cylindrical co-ordinates.
\smile
3. Show that $\vec{u}(t)=\sin t \hat{i}+\cos t \hat{j}+\sqrt{3} \hat{k}$ is orthogonal to its derivative.
4. If $f(x, y)=x y+\frac{e^{y}}{y^{2}+1}$, find $\frac{\partial^{2} f}{\partial x \partial y}$.
5. Find $\frac{d w}{d t}$ if $w=x y+z, x=\cos t, y=\sin t$ and $z=t$.
6. Find the gradient of $f(x, y)=y-x$ at the point $(2,1)$.
7. Find the area of the region R bounded by $y=x$ and $y=x^{2}$ in the first quadrant.
P.T.O.
8. Find the average value of $f(x, y)=\sin (x+y)$ over the rectangle $0 \leq x \leq \pi, 0 \leq y \leq \pi$.
9. Find the circulation of the field $\vec{F}=(x-y) \hat{i}+x \hat{j}$ around the circle

$$
\vec{r}(t)=\cos t \hat{i}+\sin t \hat{j}, 0 \leq t \leq 2 \pi
$$

10. State Green's theorem in plane.
(Weightage $6 \times 1=6$)
Answer any seven from the following. (Weightage 2 each) :
11. Find the vector projection of $\vec{b}=6 \hat{i}+3 \hat{j}+2 \hat{k}$ onto $\vec{a}=\hat{i}-2 \hat{j}-2 \hat{k}$ and scalar component of $\overrightarrow{\mathrm{b}}$ in the direction of $\overrightarrow{\mathrm{a}}$.
12. Find a vector perpendicular to the plane of $P(1,-1,0), Q(2,1,-1)$ and $R(-1,1,2)$.
13. Find the curvature of the helix $\vec{r}(t)=a \cos t \hat{i}+a \sin t \hat{j}+b t \hat{k}$,

$$
a, b \geq 0, a^{2}+b^{2} \neq 0
$$

14. Show that the function $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}$ has no limit as (x, y) approaches $(0,0)$.
15. Find the linearization of $f(x, y)=(x+y+2)^{2}$ at the point $(1,2)$.
16. Find the tangent plane and normal line of the surface $f(x, y, z)=x^{2}+y^{2}+z-9=0$ at the point $(1,2,4)$.
17. Evaluate $\iint_{R} e^{x^{2}+y^{2}} d y d x$ where R is the semi-circular region bounded by the x-axis and the curve $y=\sqrt{1-x^{2}}$.
18. Find the average value of $x y z$ over the cube bounded by the coordinate planes and the planes $x=2, y=2$ and $z=2$ in the first octant.
19. Show that $\vec{F}=\left(e^{x} \cos y+y z\right) \hat{i}+\left(x z-e^{x} \sin y\right) \hat{j}+(x y+z) \hat{k}$ is conservative and find a potential for it.
20. Find a parametrization of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

Answer any three from the following. (Weightage 3 each) :
21. Find absolute maximum and minimum values of $f(x, y)=2+2 x+2 y-x^{2}-y^{2}$ on the triangular plate in the first quadrant bounded by the lines $x=0, y=0, y=9-x$.
22. Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
23. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x$.
24. Find the circulation of the field $\vec{F}=\left(x^{2}-y\right) \hat{i}+4 z \hat{j}+x^{2} \hat{k}$ around the curve C in which the plane $z=2$ meets the cone $z=\sqrt{x^{2}+y^{2}}$, counterclockwise as viewed from above.
25. Verify divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ over the rectangular parallelopiped, $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
(Weightage $3 \times 3=9$)

