

M 1985

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal UI Ulama Degree (CCSS – Reg./Supple./Improv.) Examination, November 2012 CORE COURSE IN MATHEMATICS 5B06 MAT : Real Analysis

Time: 3 Hours

Max. Weightage: 30

- 1. Fill in the blanks :
- a) If a is a real number and $\varepsilon > 0$, then the ε -neighbourhood of 'a' is
- b) Sup $\left\{1 \frac{(-1)^n}{n} : n \in \mathbb{N}\right\} =$ _____
- c) The set of all $x \in \mathbb{R}$ that satisfy both the inequalities |2x 3| < 5 and |x + 1| > 2 simultaneously is _____
- d) $\lim \left(\sqrt{n} / n + 1 \right) =$ _____

Answer any six from the following. Weight 1 each.

- 2. If a, $b \in \mathbb{R}$, prove that $|a b| \ge |a| |b|$.
- 3. State and prove triangle inequality.
- 4. Show that the sequence $\left(\frac{2n+1}{n}\right)$ converges to 2.
- 5. If $X = (x_n)$ is a convergent sequence of real numbers and if $x_n \ge 0$ for all $n \in \mathbb{N}$, then show that $x = \lim(x_n) \ge 0$.

(Wt. 1)

- 6. Show that the sequence $((-1)^n)$ is divergent.
- 7. State the Raabe's test and show that $\sum_{n=1}^{\infty} \left(\frac{n}{n^2 + 1} \right)$ is divergent.
- 8. State the Dirichlet test and Abel's test.
- If f: A → R is uniformly continuous on a subset A of R and if (x_n) is a Cauchy Sequence in A, then show that (f(x_n)) is a Cauchy Sequence in R.

10. If I is an interval and $F: I \rightarrow \mathbb{R}$ is continuous on I, show that f(I) is an interval. (6×1=6) Answer **any seven** from the following. Weight **2 each**.

11. State and prove the Archimedean property.

12. If x > -1, prove that $(1 + x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.

- 13. Define the limit of a sequence in \mathbb{R} . Using the definition of limit show that $\lim_{n \to \infty} \left(\frac{3n+2}{n+1}\right) = 3.$
- 14. Show that any convergent sequence of real numbers is a Cauchy Sequence.
- 15. If $X = (x_n)$ and $Y = (y_n)$ are sequence of real numbers that converge to x and y respectively. Show that $X \cdot Y$ converges to $x \cdot y$.
- 16. Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent.
- 17. State the Dirichlet test for infinite series and using this prove that $\sum_{n=1}^{\infty} \frac{1}{n} \cos nx$, provided $x \neq 2K\pi$, $K \in \mathbb{N}$, converges.
- 18. IF I is a closed bounded interval and $f: I \rightarrow \mathbb{R}$ is continuous on I, then show that $f(I) = \{f(x) : x \in I\}$ is a closed bounded interval.

19. If I is a closed bounded interval and $f: I \rightarrow \mathbb{R}$ is continuous on I, show that f is uniformly continuous on I.

-3-

20. Let f: I → R be continuous on I, where I = [a, b] is a closed bounded interval. If k ∈ R satisfy inf f(I) ≤ k ≤ sup f(I), then show that there exists some C ∈ I such that f (c) = K.
(7×2=14)

Answer any three from the following. Weight 3 each.

- 21. Show that there exists a real number X such that $x^2 = 2$.
- 22. State and prove the density theorem.
- 23. If $X = (x_n)$ is a sequence of real numbers, then prove that there is a subsequence of X that is monotone.
- 24. Let I be a closed bounded interval and let f: I → R be continuous on I. Then prove that, for any ε = 0, there exists a continuous piecewise linear function g_ε: I → R such that |f(x) g_ε(x)| < ε for all x ∈ I.</p>
- 25. If I = [a, b] is a closed bounded interval and if $f: I \rightarrow \mathbb{R}$ is continuous on I, then prove that f has an absolute maximum and an absolute minimum on I. (3×3=9)