Reg. No. :
Name: \qquad 3.

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal UI Ulama Degree (CCSS - Reg./Supple./Improv.)

 Examination, November 2012

 Examination, November 2012 CORE COURSE IN MATHEMATICS
 5B06 MAT : Real Analysis

Time: 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
a) If a is a real number and $\varepsilon>0$, then the ε-neighbourhood of 'a' is \qquad
b) $\operatorname{Sup}\left\{1-\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}=$ \qquad
c) The set of all $x \in \mathbb{R}$ that satisfy both the inequalities $|2 x-3|<5$ and $|x+1|>2$ simultaneously is \qquad
d) $\lim (\sqrt{n} / n+1)=$ \qquad
Answer any six from the following. Weight 1 each.
(Wt. 1)
2. If $a, b \in \mathbb{R}$, prove that $|a-b| \geq\|a|-| b\|$.
3. State and prove triangle inequality.
4. Show that the sequence $\left(\frac{2 n+1}{n}\right)$ converges to 2 .
5. If $X=\left(x_{n}\right)$ is a convergent sequence of real numbers and if $x_{n} \geq 0$ for all $n \in N$, then show that $x=\lim \left(x_{n}\right) \geq 0$.
6. Show that the sequence $\left((-1)^{n}\right)$ is divergent.
7. State the Raabe's test and show that $\sum_{n=1}^{\infty}\left(n / n^{2}+1\right)$ is divergent.
8. State the Dirichlet test and Abel's test.
9. If $f: A \rightarrow \mathbb{R}$ is uniformly continuous on a subset A of \mathbb{R} and if $\left(x_{n}\right)$ is a Cauchy Sequence in A, then show that $\left(f\left(x_{n}\right)\right)$ is a Cauchy Sequence in \mathbb{R}.
10. If I is an interval and $F: I \rightarrow \mathbb{R}$ is continuous on I, show that $f(I)$ is an interval.

Answer any seven from the following. Weight 2 each.
11. State and prove the Archimedean property.
12. If $x>-1$, prove that $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.
13. Define the limit of a sequence in \mathbb{R}. Using the definition of limit show that $\lim \left(\frac{3 n+2}{n+1}\right)=3$
14. Show that any convergent sequence of real numbers is a Cauchy Sequence.
15. If $X=\left(x_{n}\right)$ and $Y=\left(y_{n}\right)$ are sequence of real numbers that converge to x and y respectively. Show that $X \cdot Y$ converges to $x \cdot y$.
16. Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent.
17. State the Dirichlet test for infinite series and using this prove that $\sum_{n=1}^{\infty} \frac{1}{n} \cos n x$, provided $x \neq 2 K \pi, K \in \mathbb{N}$, converges.
18. IF I is a closed bounded interval and $f: I \rightarrow \mathbb{R}$ is continuous on I, then show that $f(I)=\{f(x): x \in I\}$ is a closed bounded interval.
19. If I is a closed bounded interval and $f: I \rightarrow \mathbb{R}$ is continuous on I, show that f is uniformly continuous on I.
20. Let $\mathrm{f}: \mathrm{I} \rightarrow \mathbb{R}$ be continuous on I , where $\mathrm{I}=[\mathrm{a}, \mathrm{b}]$ is a closed bounded interval. If $k \in \mathbb{R}$ satisfy $\inf f(I) \leq k \leq \sup f(I)$, then show that there exists some $\mathbb{C} \in I$ such that $f(c)=K$.

Answer any three from the following. Weight 3 each.
21. Show that there exists a real number X such that $x^{2}=2$.
22. State and prove the density theorem.
23. If $X=\left(x_{n}\right)$ is a sequence of real numbers, then prove that there is a subsequence of X that is monotone.
24. Let I be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. Then prove that, for any $\varepsilon=0$, there exists a continuous piecewise linear function $g_{\varepsilon}: I \rightarrow \mathbb{R}$ such that $\left|f(x)-g_{\varepsilon}(x)\right|<\varepsilon$ for all $x \in I$.
25. If $I=[a, b]$ is a closed bounded interval and if $f: I \rightarrow \mathbb{R}$ is continuous on I, then prove that f has an absolute maximum and an absolute minimum on I .

