Reg. No. : \qquad
Name: \qquad .

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal UI Ulama Degree (CCSS - Reg./Supple./Improv.)
 Examination, November 2012 CORE COURSE IN MATHEMATICS
 5 B08 MAT : Graph Theory

Time: 3 Hours
Total Weightage : 30
Instruction : Answer to all questions.
Fill in the blanks :

1. a) The number of vertices in the graph $\mathrm{K}_{3,3}$ is \qquad
b) The complete graph K_{5} has \qquad number of spanning trees.
c) The number of edges in a 4 -regular graph of 6 vertices is \qquad
d) The order of the adjacency matrix of a graph G with n vertices is \qquad (Wt. 1)
Answer any six from the following . (Wt. 1 each) :
2. Define radius and diameter of a connected graph G.
3. Define the join of two graphs G_{1} and G_{2} with no vertex in common.
4. Draw a graph which is both Euler and Hamiltonian.
5. Give an example of a matching in G which is maximum but not perfect.
6. Give two examples for complete bipartite graphs which are also star graphs.
7. Define a digraph isomorphism.
8. Draw the $D_{2,3}$ Bruijn diagram and use it to construct $a(2,3)$ de Bruijn sequence.
9. Define a tournament and give an example.
10. When graph G is said to be randomly traceable for a vertex θ ? Give examples.

Answer any seven of the following. Wt. 2 each :
11. When a simple graph G is said to be self-complementary and give an example for a self-complementary graph.
12. Define the distance between two vertices u and v in a graph G. Prove that for any vertices u, v and w in G we have $d(u, w) \leq d(u, v)+d(v, w)$.
13. Prove that the graph G with adjacency matrix

$$
A(G)=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \text { is connected. }
$$

14. Let G be an acyclic graph with n vertices and K connected components. Then prove that G has $(n-k)$ edges.
15. Let G be a connected graph. Then prove that G is a tree if and only if every edge of G is a bridge.
16. State the travelling salesman problem.
17. Prove that a matching M in a graph G is a maximum matching if and only if G contains no M -augmenting paths.
18. Prove that a tournament T is Hamiltonian if and only if it is strongly connected.
19. Prove that every tournament T has a directed Hamiltonian path.
20. When a digraph D is s and to be unilaterally connected ? Give an example for a digraph which is unilaterally connected but not strongly connected.

Answer any three of the following. Wt. 3 each :
21. Let G be a graph with n vertices. Then prove that the following three statements are equivalent:
i) G is a tree.
ii) G is an acyclic graph with $(n-1)$ edges.
iii) G is a connected graph with $(n-1)$ edges.
22. If G is a simple graph with n vertices where $\mathrm{n} \geq 23$ and degree $\mathrm{d}(\mathrm{v}) \geq \mathrm{n} / 2$ for every vertex v of G, then prove that G is Hamiltonian.
23. Prove that a matching M in a graph G is a maximum matching if an only if G contains no M -augmenting path.
24. Let D be a weakly connected digraph with at least one arc. There prove that D is Euler if and only if od $(\mathrm{v})=\mathrm{id}(\mathrm{v})$ for every vertex v of D .
25. Prove that a graph G is orientable if and only if it is connected and has no bridges.

