Reg. No.: \qquad
Name: \qquad

M 1988

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal UI Ulama Degree (CCSS - Reg./Supple./Improv.) Examination, November 2012 CORE COURSE IN MATHEMATICS
5B09 MAT : Differential Equations and Numerical Analysis
Time: 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
(Weightage : 1)
a) Wronskian of y_{1} and $y_{2} W\left[y_{1}, y_{2}\right]$ is \qquad
b) Let m_{1} and m_{2} be the roots of the characteristic equation of $y^{\prime \prime}+p y^{\prime}+q y=0$. If m_{1} and m_{2} are real and equal say m, then the general solution is \qquad
c) The characteristic equation of $y^{\prime \prime}-2 y^{\prime}-3 y=0$ is \qquad
d) Consider the non homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=R(x)$, where $R(x)=e^{a x}$. Then if a is a double root of the auxillary equation, the particular solution is
\qquad
Answer any six from the following (Weightage 1 each) :
2. Solve $e^{y}+\left(x e^{y}+2 y\right) d y=0$.
3. Determine the order of the differential equation $\frac{d^{2} y}{d x^{2}}-\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=0$.
4. Find the general solution of $y^{\prime \prime}+2 y^{\prime}+y=0$.
5. Find the particular solution of $y^{\prime \prime}-4 y=\tan x$ by the method of variation of parameters.
6. A rod of length l is heated so that the ends A and B are at zero temperature. If initially its temperature is given by $u=\frac{\mathrm{cx}(l-\mathrm{x})}{l^{2}}$. What are the boundary conditions.
P.T.O.
7. What are the assumptions in the derivation of one dimensional wave equation ?
8. Explain the Taylor series method for solving the first order differential equation.
9. Find by Newton's method, the real root of the equation $x e^{x}-2=0$ correct to two decimal places.
10. Find the cubic polynomial which takes the following values:

X	0	1	2	3
$f(x)$	1	2	1	10

Answer any seven from the following (Weightage 2 each) :
11. Solve $\left(x y^{2}-e^{x^{\frac{1}{3}}}\right) d x-x^{2} y d y=0$.
12. Find the solution of the differential equation $\frac{d y}{d x}-x \tan (y-x)=1$.
13. Solve $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}$.
14. Show that $y=C_{1} e^{x}+C_{2} e^{2 x}$ is the general solution of $y^{\prime \prime}-3 y^{\prime}+2 y=0$ on any interval and find the particular solution for which $y(0)=-1$ and $y^{\prime}(0)=1$.
15. Find the general solution of $y^{\prime \prime}+y=2 \cos x$.
16. Solve the following equation using the method of separation of variables.

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u, u(x, 0)=6 e^{-3 x}
$$

17. A rod of length l has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively, until steady - state conditions prevail. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and kept so, while that of A is maintained, find the temperature function $u(x, t)$.
18. Using Newton's forward interpolation formula, find y at $x=8$ from the following table :

x:	0	5	10	15	20	25
y:	7	11	14	18	24	32

19. Apply Gauss elimination method of solve the equations $x+4 y-z=5$, $x-y-6 z=-12 ; 3 x-y-z=4$.
20. Using Picard's method, find a solution of $\frac{d y}{d x}=x+y$ upto fourth approximation, when $y(0)=1$.

Answer any three from the following (Weightage 3 each) :
21. Solves $\cos (x+y) d y=d x$.
22. Solve $\left(x^{2}-y^{2}\right) d x=2 x y d y$.
23. Solve by the method of variation of parameters
$\left(x^{2}+x\right) y^{\prime \prime}+\left(2-x^{2}\right) y^{\prime}-(2+x) y=x(x+1)^{2}$.
24. Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ using
i) Simpson's one third rule taking $\mathrm{h}=\frac{1}{4}$,
ii) Simpson's three eighth rule taking $h=\frac{1}{6}$.
25. Using Runge-Kutta method of fourth order solve for $y(0.1), y(0.2)$ and $y(0.3)$ given that $y^{\prime}=x y+y^{2}, y(0)=1$.

