Reg. No. :

Name : \qquad

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W./ B.A. Afsal UI Ulama Degree (CCSS - Reg./Supple./Improv.) Examination, November 2012 CORE COURSE IN MATHEMATICS 5B07 MAT : Abstract Algebra

Time: 3 Hours
Max. Weightage : 30

1. Mark each of the following are true or false (Weightage 1) :
a) If $*$ is any binary operation on any set S , then $\mathrm{a} * \mathrm{a}=\mathrm{a}$ for all $\mathrm{a} \in \mathrm{G}$.
b) Any finite group of atmost three elements is abelian.
c) Every cyclic group is abelian.
d) Every group of order ≤ 4 is cyclic.

Answer any 6 from the following 9 questions (Weightage 1 each) :
2. Define a cyclic group. Find the number of generators of a cyclic group having the order 8.
3. Define a cyclic group. Find the number of generators of a cyclic group having the order 12.
4. Define orbit of a permutation. Find the orbits of the permutation.

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 8 & 6 & 7 & 4 & 1 & 5 & 2
\end{array}\right) \text { in } \mathrm{S}_{8} .
$$

5. Let H be a subgroup of a group G and let $\mathrm{a} \in \mathrm{G}$. Define the left and right cosets of H containing a. Exhibit all left and right cosets of the subgroup $4 Z$ of $2 Z$.
6. Define a group homomorphism. Determine whether the map $\phi: R^{*} \rightarrow R^{*}$ under multiplication given by $\phi(x)=|x|$ is an homomorphism.
7. Determine the number of group homomorphisms from Z into Z.
8. Define a ring. Give an example of a ring having two elements a and b such that $a b=0$ but neither a nor b is zero.
9. Define the characteristic of a ring R. Find the characteristic of the ring $Z_{3} \times Z_{4}$.
10. Define an idempotent element of a ring. Show that a division ring contains exactly two idempotent elements.

Answer any 7 from the following 10 questions (Weightage 2 each) :
11. Prove that if G is an abelian group, written multiplicatively, with identity element e, then all elements x of G satisfying the equation $x^{2}=e$ form a subgroup H of G.
12. Define a subgroup of a group G. Find all subgroups of Z_{18}.
13. Show that if H and K are subgroups of an abelian group G, then $\{h k \backslash h \in H$ and $k \in K$ \} is a subgroup of G .
14. Obtain the group of symmetries of an equilateral triangle with vertices 1,2 and 3 . Show that it is nonabelian.
15. Prove that a group G of prime order is cyclic.
16. Define normal subgroup of a group G . If $\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a group homomorphism, then show that $\operatorname{Ker}(\phi)$ is a normal subgroup of G .
17. Show that A_{n} is a normal subgroup of S_{n} and find a known group to which S_{n} / A_{n} is isomorphic.
18. Show that if H and K are normal subgroups of a group G such that $H \cap K=\{e\}$, then $h k=k h$ for all $h \in H$ and $k \in K$.
19. Show that the characteristic of an integral domain D must be either 0 or a prime p.
20. Find all solutions of the congruence $15 x \equiv 27(\bmod 18)$.

Answer any 3 from the following 5 questions (Weightage 3 each) :
21. Show that a subgroup of a cyclic group is cyclic.
22. Prove that any permutation of a finite set of at least two elements is a product of transpositions.
23. Let H be a subgroup of G such that $\mathrm{g}^{-1} \mathrm{hg} \in \mathrm{H}$ for all $\mathrm{g} \in \mathrm{G}$ and all $\mathrm{h} \in \mathrm{H}$. show that every left coset gH is the same as the right coset Hg .
24. State and prove the fundamental homomorphism theorem.
25. If $a \in Z$, the show that $a^{p} \equiv a(\bmod p)$ for any prime p.

