

Reg. No.:....

Name :

LIBRARY CA

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. A.A.A.M./B.B.M./B.C.A./B.S.W. Degree (CCSS – Regular) Examination, November 2011 CORE COURSE IN MATHEMATICS

5B06 MAT: Real Analysis

Time: 3 Hours

Max. Weightage: 30

1. Fill in the blanks:

- a) If $a \in \mathbb{R}$ is such that $0 \le a < \varepsilon$ for every $\varepsilon > 0$, then $a = \underline{\hspace{1cm}}$
- b) If x > -1, then $(1 + x)^n \ge$ _____
- c) Sup $\left\{ \frac{1}{n} \frac{1}{m} : n, m \in \mathbb{N} \right\} = \underline{\hspace{1cm}}$
- d) The set of all $x \in \mathbb{R}$ that satisfy $|x^2 1| \le 3$ is _____ (Wt. 1×1=1)

Answer any six from the following. Weight 1 each:

- 2. If a and b are rationals and $b \neq 0$ then show that $a + b\sqrt{2}$ is irrational.
- 3. For all $x, y \in \mathbb{R}$, prove that |xy| = |x||y|
- 4. Prove that the sequence $\left(\frac{1}{n}\right)$ converges to zero.
- 5. Show that a convergent sequence of real numbers is bounded.
- 6. Show that every convergent sequence $X = (x_n)$ of real numbers is a Cauchy sequence.
- 7. Prove that an absolutely convergent series in R is convergent.
- 8. State the integral test.
- 9. Define continuity and uniform continuity. Give an example of a function which is continuous but not uniformly continuous.
- 10. If $f: A \to \mathbb{R}$, $A \subseteq \mathbb{R}$, is a lipschitz function then show that f is uniformly continuous on A.

Answer any seven from the following. Weight 2 each:

- 11. If $a, b \in \mathbb{R}$, prove that $||a| |b| \le |a b|$
- 12. Prove that the set of real numbers is not countable.
- 13. Show that a sequence in R can have at most one limit.
- 14. If 0 < b < 1, show that $\lim_{n \to \infty} (b^n) = 0$.
- 15. Define a contractive sequence and prove that every contractive sequence is a Cauchy sequence.
- 16. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.
- 17. State and prove that Abel's test for infinite series.
- 18. Let I be an interval and $f: I \to \mathbb{R}$ be continuous on I. Let $a,b \in I$ and $k \in \mathbb{R}$ satisfies f(a) < k < f(b). Then prove that there exists a point $C \in I$ between a and b such that f(c) = k.
- 19. If I is an interval and $f: I \to \mathbb{R}$ is continuous then prove that f(I) is an interval.
- 20. Let $f: I \to \mathbb{R}$ be an increasing function on I, where $I \subseteq \mathbb{R}$ is an interval. If $C \in I$ and C is not an end point of I, then prove that $\lim_{x \to c} -f = \sup \{f(x) : x \in I, x < c\}$.

Answer any three from the following. Weight 3 each:

- 21. If S is a non-empty subset of \mathbb{R} , prove that Sup (a + S) = a + Sup S, where $a \in \mathbb{R}$.
- 22. State and prove the density theorem.
- 23. State and prove the monotone convergence theorem.
- 24. State and prove the maximum-minimum theorem.
- 25. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be strictly monotone and continuous on I. Then prove that the function g inverse to f is strictly monotone and continuous on J = f(I).