Reg. No. : \qquad
Name: \qquad

M 11408

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. ${ }^{\text {A.G.M./B.B.M./B.C.A./B.S.W. }}$ Degree (CCSS - Regular) Examination, November 2011 CORE COURSE IN MATHEMATICS 5B06 MAT : Real Analysis

Time: 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
a) If $a \in \mathbb{R}$ is such that $0 \leq a<\varepsilon$ for every $\varepsilon>0$, then $a=$ \qquad
b) If $x>-1$, then $(1+x)^{n} \geq$ \qquad
c) $\operatorname{Sup}\left\{\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{~m}}: \mathrm{n}, \mathrm{m} \in \mathbb{N}\right\}=$ \qquad
d) The set of all $x \in \mathbb{R}$ that satisfy $\left|x^{2}-1\right| \leq 3$ is
(Wt. $1 \times 1=1$)
Answer any six from the following. Weight 1 each :
2. If a and b are rationals and $b \neq 0$ then show that $a+b \sqrt{2}$ is irrational.
3. For all $x, y \in \mathbb{R}$, prove that $|x y|=|x||y|$
4. Prove that the sequence $\left(\frac{1}{n}\right)$ converges to zero.
5. Show that a convergent sequence of real numbers is bounded.
6. Show that every convergent sequence $X=\left(x_{n}\right)$ of real numbers is a Cauchy sequence.
7. Prove that an absolutely convergent series in \mathbb{R} is convergent.
8. State the integral test.
9. Define continuity and uniform continuity. Give an example of a function which is continuous but not uniformly continuous.
10. If $f: A \rightarrow \mathbb{R}, A \subseteq \mathbb{R}$, is a lipschitz function then show that f is uniformly continuous on A .

Answer any seven from the following. Weight 2 each :
11. If $a, b \in \mathbb{R}$, prove that $\| a|-|b|| \leq|a-b|$
12. Prove that the set of real numbers is not countable.
13. Show that a sequence in \mathbb{R} can have at most one limit.
14. If $0<b<1$, show that $\lim \left(b^{\mathrm{n}}\right)=0$.
15. Define a contractive sequence and prove that every contractive sequence is a Cauchy sequence.
16. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
17. State and prove that Abel's test for infinite series.
18. Let I be an interval and $f: I \rightarrow \mathbb{R}$ be continuous on I. Let $a, b \in I$ and $k \in \mathbb{R}$ satisfies $f(a)<k<f(b)$. Then prove that there exists a point $C \in I$ between a and b such that $\mathrm{f}(\mathrm{c})=\mathrm{k}$.
19. If I is an interval and $f: I \rightarrow \mathbb{R}$ is continuous then prove that $f(I)$ is an interval.
20. Let $f ; I \rightarrow \mathbb{R}$ be an increasing function on I, where $I \subseteq \mathbb{R}$ is an interval. If $C \in I$ and C is not an end point of I, then prove that $\lim _{x \rightarrow c}-f=\operatorname{Sup}\{f(x): x \in I, x<c\}$.

Answer any three from the following. Weight 3 each :
21. If S is a non-empty subset of \mathbb{R}, prove that $\operatorname{Sup}(a+S)=a+\operatorname{Sup} S$, where $a \in \mathbb{R}$.
22. State and prove the density theorem.
23. State and prove the monotone convergence theorem.
24. State and prove the maximum-minimum theorem.
25. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \rightarrow \mathbb{R}$ be strictly monotone and continuous on I. Then prove that the function g inverse to f is strictly monotone and continuous on $J=f(I)$.

