

Reg. No.:....

Name:.....

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W. Degree (CCSS - Regular) Examination, November 2011 CORE COURSE IN MATHEMATICS 5B08 MAT: Graph Theory

Time: 3 Hours	Max. Weightage: 30
Instruction: Answer to all ques	stions.
1. Fill in the blanks:	 Let G be a simple connected graph with at let in G of smallest possible degree say K thep)
a) The 3-cube Q ₃ has	
b) The complete graph K _n has	different spanning trees.
c) The complete graph K3 has	different Hamiltonian cycles.
d) Suppose G is a 2-regular graph of matrix of G is	5 vertices. Then the order of incidence
Answer any six from the following (W	t. 1 each):
2. Define a graph isomorphism.	
3. Define the join of two graphs G_1 and	d G ₂ with no vertex in common.
4. Define Euler and Hamiltonian graph	ns. Togo I bo on and if if ylpo bas it punsqia
5. Give an example of a matching in G	which is maximum but not perfect.
6. Draw the strongly connected orienta	ations of K ₃ .
7. Draw the (3, 2) de Brujin diagram an	ed use it to construct a (3, 2) Brujin sequence.
8. When a graph G is said to be unicyc	elic ? Give example.
9. Define articulation point of a graph	G. Prove that a savingly connected that S. S.

10. Draw a graph which has a Hamiltonian path but no Hamiltonian cycle.

Answer any seven of the following (Wt. 2 each):

- 11. Prove that in any graph G there is an odd number of odd vertices.
- 12. Define the square of a simple connected graph G. Show that the square of $K_{1,3}$ is K_n .
- 13. Let G be a graph with n vertices and let A denote the adjacency matrix of G. Let $B = (b_{ij})$ be the matrix $B = A + A^2 + ... + A^{n-1}$. Prove that G is connected iff B has no zero entries off the main diagonal.
- 14. Prove that if T is a tree with n vertices then it has precisely (n-1) edges.
- 15. Prove that a graph G is connected if and only if it has a spanning tree.
- 16. Let G be a simple connected graph with at least two vertices and let v be a vertex in G of smallest possible degree say K then prove that $K(G) \leq K$.
- 17. Prove that a simple graph G is Hamiltonian if and only if its closure C (G) is Hamiltonian.
- 18. Prove that a connected graph G has an Euler trail if and only if it has at most two odd vertices.
- 19. Prove that every tournament T has a directed Hamiltonian path.
- 20. Prove that for each pair of positive integer n and k, both greater than one, the de Brujin diagram $D_{n,\,k}$ has a directed Euler tour.

Answer any three of the following (Wt. 3 each):

- 21. Let G be a non-empty graph with atleast two vertices. Then prove that G is bipartite if and only if it has no odd cycles.
- 22. Let e be an edge of a graph G and as usual let G e be the subgraph obtained by deleting e. Then prove that $W(G) \leq W(G e) \leq W(G) + 1$.
- 23. Prove that a connected graph G is Euler if and only if the degree of every vertex is even.
- 24. If G is a simple graph with n vertices where $n \ge 3$ and the degree $d(v) \ge n/2$ for every vertex v of G, then prove that G is Hamiltonian.
- 25. Prove that a strongly connected tournament T on n vertices contains directed cycles of length 3, 4, n.