Reg. No. : \qquad
Name:

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W.
 Degree (CCSS - Regular) Examination, November 2011 CORE COURSE IN MATHEMATICS 5B08 MAT : Graph Theory

Time: 3 Hours

Max. Weightage : 30
Instruction : Answer to all questions.

1. Fill in the blanks :
a) The 3-cube Q_{3} has \qquad vertices.
b) The complete graph K_{n} has \qquad different spanning trees.
c) The complete graph K_{3} has \qquad different Hamiltonian cycles.
d) Suppose G is a 2-regular graph of 5 vertices. Then the order of incidence matrix of G is \qquad .

Answer any six from the following (Wt. 1 each) :
2. Define a graph isomorphism.
3. Define the join of two graphs G_{1} and G_{2} with no vertex in common.
4. Define Euler and Hamiltonian graphs.
5. Give an example of a matching in G which is maximum but not perfect.
6. Draw the strongly connected orientations of K_{3}.
7. Draw the $(3,2)$ de Brujin diagram and use it to construct a $(3,2)$ Brujin sequence.
8. When a graph G is said to be unicyclic ? Give example.
9. Define articulation point of a graph G.
10. Draw a graph which has a Hamiltonian path but no Hamiltonian cycle.
p.T.O.

Answer any seven of the following (Wt. 2 each) :
11. Prove that in any graph G there is an odd number of odd vertices.
12. Define the square of a simple connected graph G . Show that the square of $\mathrm{K}_{1,3}$ is K_{n}.
13. Let G be a graph with n vertices and let A denote the adjacency matrix of G . Let $B=\left(b_{i j}\right)$ be the matrix $B=A+A^{2}+\ldots+A^{n-1}$. Prove that G is connected iff B has no zero entries off the main diagonal.
14. Prove that if T is a tree with n vertices then it has precisely $(n-1)$ edges.
15. Prove that a graph G is connected if and only if it has a spanning tree.
16. Let G be a simple connected graph with at least two vertices and let v be a vertex in G of smallest possible degree say K then prove that $K(G) \leq K$.
17. Prove that a simple graph G is Hamiltonian if and only if its closure $C(G)$ is Hamiltonian.
18. Prove that a connected graph G has an Euler trail if and only if it has at most two odd vertices.
19. Prove that every tournament T has a directed Hamiltonian path.
20. Prove that for each pair of positive integer n and k, both greater than one, the de Brujin diagram $D_{n, k}$ has a directed Euler tour.
Answer any three of the following (Wt. 3 each) :
21. Let G be a non-empty graph with atleast two vertices. Then prove that G is bipartite if and only if it has no odd cycles.
22. Let e be an edge of a graph G and as usual let $\mathrm{G}-\mathrm{e}$ be the subgraph obtained by deleting e. Then prove that $\mathrm{W}(\mathrm{G}) \leq \mathrm{W}(\mathrm{G}-\mathrm{e}) \leq \mathrm{W}(\mathrm{G})+1$.
23. Prove that a connected graph G is Euler if and only if the degree of every vertex is even.
24. If G is a simple graph with n vertices where $n \geq 3$ and the degree $d(v) \geq n / 2$ for every vertex v of G, then prove that G is Hamiltonian.
25. Prove that a strongly connected tournament T on n vertices contains directed cycles of length $3,4, \ldots . \mathrm{n}$.

