Reg. No. : \qquad
Name: \qquad

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W. Degree (CCSS - Regular) Examination, November 2011 CORE COURSE IN MATHEMATICS
 5B09 MAT : Differential Equations and Numerical Analysis

Time : 3 Hours
Max. Weightage : 30

1. Fill in the blanks (Weightage : 1) :
a) If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions of the homogeneous equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$. Then its general solution is \qquad
b) Let m_{1} and m_{2} be the roots of the characteristic equation of $y^{\prime \prime}+p y^{\prime}+q y=0$. If m_{1} and m_{2} are real and distinct, then the general solution is \qquad
c) The characteristic equation of $y^{\prime \prime}+2 y^{\prime}+y=0$ is \qquad
d) Consider the non homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=R(x)$, where $R(x)=e^{a x}$. Then if a is a single root of the auxiliary equation, the particular solution is \qquad
Answer any six from the following (Weightage 1 each) :
2. Solve $\left(y-x^{3}\right) d x+\left(x+y^{3}\right) d y=0$.
3. State the existence and uniqueness theorem.
4. If k and b are positive constants, find the general solution of $y^{\prime \prime}+k^{2} y=\sin b x$.
5. Show that e^{x} and $\mathrm{e}^{-\mathrm{x}}$ are linearly independent solutions of $\mathrm{y}^{\prime \prime}-\mathrm{y}=0$ on any interval.
6. State the empirical laws taken as the basis of investigation of one dimensional heat flow.
7. What are the initial and boundary conditions of wave equation?
8. Evaluate $\sqrt{28}$ to four decimal places by Newton's iterative method.
9. Explain the Euler's method for solving the first order differential equation.
10. Using Picard's method, find a solution of $\frac{d y}{d x}=1+x y$ upto the third approximation, when y $(0)=0$.

Answer any seven from the following (Weightage 2 each) :
11. Solve $y\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0$.
12. Solve the differential equation $x^{4} \frac{d y}{d x}+x^{3} y=-\sec (x y)$.
13. Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\sin \left(\log x^{2}\right)$.
14. Show that $y=c_{1} \sin x+c_{2} \cos x$ is the general solution of $y^{\prime \prime}+y=0$ on any interval and find the particular solution for which $y(0)=2$ and $y^{\prime}(0)=3$.
15. Find the general solution of $y^{\prime \prime}+10 y^{\prime}+25 y=14 e^{-5 x}$.
16. Using the method of separation of variables, solve the equation $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0$.
17. If a string of length l is initially at rest in the equilibrium position and each of its points is given the velocity $\left(\frac{\partial \mathrm{y}}{\partial \mathrm{t}}\right)_{\mathrm{t}=0}=\mathrm{V}_{0} \sin ^{3} \frac{\pi \mathrm{x}}{l}, 0<\mathrm{x}<l$, determine the displacement $y(x, t)$.
18. Given $\sin 45^{\circ}=0.7071, \sin 50^{\circ}=0.7660, \sin 55^{\circ}=0.8192, \sin 60^{\circ}=0.8660$ find $\sin 52^{\circ}$, using Newton's interpolation formula.
19. Perform two iterations of Picard's method to find an approximate solution of the initial value problem $\frac{d y}{d x}=x+y^{2} ; y(0)=1$.

M 11411
Answer any three from the following (Weightage 3 each) :
20. Use Gauss -Jordan reduction method to computeathe inverse of the matrix

$$
\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \text { by applying elementary row transformations. }
$$

21. Solve $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$.
22. Solve $3 e^{x} \operatorname{tanydx}+\left(1+e^{x}\right) \sec ^{2} y d y=0$, given $y=\left(\frac{\pi}{4}\right)$ when $x=0$.
23. Solve by the method of variation of parameters $y^{\prime \prime}+2 y^{\prime}+y=e^{-x} \log x$.
24. Using Euler's method, solve for y at $\mathrm{x}=0.1$ from $\frac{d y}{d x}=x+y+x y, y(0)=1$ taking step size $\mathrm{h}=0.025$.
25. Use Taylor's method to obtain approximate value of y at $\mathrm{x}=0.2$ for the differential equation $\frac{d y}{d x}=2 y+3 e^{x}, y(0)=0$.
