Reg. No. :
Name:

V Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W. Degree (CCSS - Regular) Examination, November 2011 CORE COURSE IN MATHEMATICS
 5B07 MAT : Abstract Algebra

Time: 3 Hours

Max. Weightage : 30

1. Mark each of the following are true or false. (Weightage : 1)
a) In a group, each linear equation has a solution
b) Any two groups of three elements are isomorphic
c) Every abelian group is cyclic
d) In every cyclic group, every element is a generator.

Answer any 6 from the following 9 questions (Weightage 1 each)
2. Define a group. Let * be defined on \mathbf{Z} by letting $\mathrm{a} * \mathrm{~b}=\mathrm{ab}$. Is Z a group under the operation*. Justify your answer.
3. Show that every group G with identify e and such that $x * x=e$ for all $x \in G$ is abelian.
4. Express the following permutation of $\{1,2,3,4,5,6,7,8\}$ as a product of disjoint cycles, and then as a product of transpositions.

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 1 & 4 & 7 & 2 & 5 & 8 & 6
\end{array}\right)
$$

5. Let H be a subgroup of a group G and let $\mathrm{a} \in \mathrm{G}$. Define the left and right cosets of H containing a. Exhibit all left and right cosets of the subgroup $\langle 4\rangle$ of Z_{12}.
6. Define a group homomorphism. Determine whether the map $\phi: R \rightarrow Z$ under addition given by $\phi(x)=$ the greatest integer $\leq x$ is a homomorphism.
7. Determine the number of group homomorphisms from Z onto Z .
8. Define a ring. Give an example of a ring with unity $1 \neq 0$ than has a subring with non-zero unity $1^{\prime} \neq 1$.
9. Define the characteristic of a ring R. Find the characteristic of the ring $Z_{3} \times Z_{3}$.
10. Show that every field F is an integral domain.

Answer any $\mathbf{7}$ from the following $\mathbf{1 0}$ questions. (Weightage 2 each)
11. Show that a group with no proper nontrivial subgroups is cyclic.
12. Discuss the different group structures of order 4.
13. Show that if G is a finite group with identity e and with an even number of elements, then there is $a \neq e$ in G such that $a * a=e$.
14. Show that a group with atleast two elements but with no proper nontrivial subgroups must be finite and of prime order.
15. Obtain the group of symmetries of the square with vertices $1,2,3$ and 4 . Show that it is nonabelian.
16. Define kernel of a homomorphism. Show that a group homomorphism $\phi: G \rightarrow G^{\prime}$ is a one-to-one map if and only if $\operatorname{Ker}(\phi)=\{\mathrm{e}\}$.
17. Define an automorphism of a group G. Show that all automorphisms of a group G form a group under function composition.
18. Show that if a finite group G contains a nontrivial subgroup of index 2 in G, the G is not simple.
19. Show that every finite integral domain is a field.
20. Find all solutions of the congruence $12 x \equiv 27(\bmod 18)$.

Answer any 3 from the following 5 questions. (Weightage 3 each)
21. Let G be a cyclic group with generator a. If the order of G is infinite, then show that G is isomorphic to $\langle Z,+\rangle$. If G has finite order n, then show that G is isomorphic to $\left\langle\mathrm{Z}_{\mathrm{n}},+\right\rangle$.
22. State and prove Cayley's theorem.
23. State and prove Lagrange's theorem.
24. Let H be a normal subgroup of G . Then show that the cosets of H form a group G / H under the binary operation $(\mathrm{aH})(\mathrm{bH})=(\mathrm{ab}) \mathrm{H}$.
25. If a is an integer relatively prime to n, then show that $a^{\phi(n)}-1$ is divisible by n.

