Reg. No. : \qquad
Name : \qquad

IV Semester B.Sc. Degree (CCSS - Reg./Supple./Imp.)
 Examination, May 2015 CORE COURSE IN MATHEMATICS
 4B04 MAT : Calculus

Time : 3 Hours
Max. Weightage : 30
Fill in the blanks :

1. a) \qquad is an example of a function which is continuous at $\mathrm{x}=0$ and has no derivative at $\mathrm{x}=0$.
b) $\frac{d}{d x}\left(1-x^{2}\right)^{-1 / 2}=$ \qquad
c) If $\sqrt{5-2 x^{2}} \leq f(x) \leq \sqrt{5-x^{2}}$, then $\lim _{x \rightarrow 0} f(x)=$ \qquad
d) The function $y=\sin \left(\frac{1}{x}\right)$ has no limit as $x \rightarrow$ \qquad (Weight : 1)
2. a) $\int \frac{2 z}{\sqrt[3]{z^{2}+1}} d z=$ \qquad
b) $\int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1} d x=$ \qquad
c) $\sqrt{(n)}=$
d) $\int_{0}^{\infty} e^{-x^{2}} d x=$
(Weight : 1)
Answer any five from the following (Weight 1 each) :
3. Find:
a) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
b) $\lim _{\theta \rightarrow 0}\left(\frac{1}{\theta}-\frac{1}{\sin \theta}\right)$.
4. State the maximum-minimum theorem for continuous functions.
5. Find two positive numbers whose sum is 20 and whose product is as large as possible.
6. State the Mean-Value Theorem.
7. Show that the equation $x^{3}+3 x+1=0$ has exactly one root.
8. State Rolle's theorem.
9. Replace $(x-5)^{2}+y^{2}=25$ by a polar equation.
10. Find b for which $f(x)=x^{3}+b x^{2}+c x+d$ has a point of inflexion at $x=1$; where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are constants.

Write any seven from the following (Weight 2 each) :
11. Find $\mathrm{n}^{\text {th }}$ derivatives of :
a) ${ }^{x} \cos 2 x$
b) $\frac{x+1}{x^{2}-4}$
12. State Leibnitz's theorem and use it to prove that if $y=e^{a \sin ^{-1} x}$,

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0 .
$$

13. Prove that the asymptotes of $x^{2} y^{2}=c^{2}\left(x^{2}+y^{2}\right)$ are the sides of a square.
14. Using Maclaurin's series, obtain the expansion of $e^{x} \sin x$ up to the term containing x^{5}.
15. Find the radius of curvature at (x, y) for the curve $a^{2} y=x^{3}-a^{3}$.
16. Find the evolute of the parabola $y^{2}=4 a x$.
17. Evaluate:
a) $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+2}$
b) $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$.
18. Find the length of the curve $y=$ long $\sec x$ between the points given by $x=0$ and $x=\frac{\pi}{3}$.
19. One arc of the sine curve $y=\sin x$ revolves round the x-axis. Find the volume of the solid so generated.
20. Find the area enclosed by the Cardioid $\mathrm{r}=\mathrm{a}(1+\cos \theta)$.

Write any three from the following (Weight 3 each) :
21. Find $\frac{d y}{d x}$ for the following :
a) If $x=a(\theta+\sin \theta) ; y=a(1-\cos \theta)$
b) If $x^{y}=y^{x}$, prove that $\frac{d y}{d x}=\frac{y(y-x \log y)}{x(x-y \log x)}$.
c) If $y=(1+\log x)^{x^{x}}$.
22. State and prove the fundamental theorem of Calculus.
23. Use Simpson's rule with $h=4$ to evaluate $\int_{0}^{1} 5 x^{4} d x$.
24. Use reduction formula to evaluate :
a) $\int x^{n} e^{a x} d x$
b) $\int x^{n} \sin x d x$.
25. a) Find the perimeter of the Cardioid $r=a(1-\cos \theta)$.
b) Find the volume of the solid obtained by revolving the Cardioid $\mathrm{r}=\mathrm{a}(1+\operatorname{Cos} \theta)$ about the initial line.

