\qquad
Name: \qquad

IV Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W. (CCSS-Regular) Degree Examination, March 2011 STATISTICS (Complementary Course)
 (For Maths/Comp.Science)
 4C04STA : Statistical Inference

Time: 3 Hours
Total Weightage : 30

Instruction: Use of Scientific calculator permitted. Statistical tables are permitted.

PART - A

Answer any $\mathbf{1 0}$ questions :
(Weightage 1 each)

1. Define sampling distribution and standard error.
2. A sample of size 16 is taken from a normal population with mean 2 and standard deviation 3 . What is the probability that the sample mean exceeds 2.5 ?
3. Find the mean of chi-square distribution.
4. Write down the probability density function of F-distribution.
5. Define student'st-statistic. Write down its density function.
6. Define consistent estimator.
7. Define relative efficiency of an estimator.
8. Define maximum likelihood estimator.
9. What is confidence interval for a parameter ?
10. Distinguish between simple and composite hypothesis.
11. Distinguish between parametric and non-parametric tests.
P.T.O.
PART - B

Answer any 6 questions :

12. Find the mean and variance of student'st-distribution.
13. State and prove the additive property of chi-square random variables.
14. If S^{2} is the variance of a sample of size n selected from a normal population with variance σ^{2}, show that S^{2} is consistent for σ^{2}.
15. Compare the efficiencies of the estimators $\mathrm{T}_{1}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}}{3}, \mathrm{~T}_{2}=\frac{\mathrm{x}_{1}, 2 \mathrm{x}_{2}+3 \mathrm{x}_{3}}{6}, \mathrm{~T}_{3}=\frac{2 \mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3}}{2}$ for estimating the mean μ of the population with finite variance σ^{2}.
16. Derive a $100(1-2) \%$ confidence interval for the variance of a normal population when the population mean is (i) unknown (ii) known
17. If $\mathrm{X}_{1}, \mathrm{X}_{2} \ldots . . \mathrm{X}_{\mathrm{n}}$ is a sample of size N from a binomial population with parameters n and p . Find the MLE of P . Assume that n is known.
18. To list $H_{0}: \theta=1$ against $\mathrm{H}_{1}: \theta=2$, a sample of size 1 is taken from a population with density function $f(x)=\left\{\begin{array}{cc}1 / \theta ; & \text { if } 0<x<\theta \\ 0 & \text { otherwise }\end{array}\right.$

Find the level of significance and power of the test if H_{0} is subjected when the abserved value is greater than 0.5 .
19. Obtain the most powerful size α test for $\mathrm{H}_{0}: \theta=\theta_{0}$ against $\mathrm{H}_{1}: \theta=\theta_{1}\left(\theta 1>\theta_{0}\right)$ where θ is the parameter of a population
$f(x)=\left\{\begin{array}{cc}\theta \mathrm{x}^{\theta-1} ; & 0<\mathrm{x}<1, \theta>0 \\ 0 & \text { otherwise }\end{array}\right.$
based on a sample of size n.
20. Discuss the importance steps in a large sample test based on normal distribution.

PART - C
Answer any 2 questions :
(Weightage 4 each)
21. Let $X_{1} X_{2} \ldots . \mathrm{X}_{\mathrm{n}}$ be a sample of size n from a normal population with mean μ and variance σ^{2}. Obtain the MLEs of μ and σ^{2}.
22. To test $\mathrm{H}_{0}: \mathrm{P}=1 / 2$ against $\mathrm{H}_{1}: \mathrm{P}=3 / 4$, where p is the probability of getting head in single toss of a coin, the coin is tossed 8 times. If the number of heads obtained is 6 or more or 2 or less H_{0} is rejected and H_{0} is accepted otherwise. Find the probabilities of type 1 and type 11 errors.

- 23. Two random samples drawn from two normal populations are given as follows :

Sample I :	20	16	26	27	23	22	18	24	25	19

Sample II : $27 \begin{array}{lllllllllll}37 & 42 & 35 & 32 & 34 & 38 & 28 & 41 & 43 & 30 & 37\end{array}$
Test whether the two populations have the same variance (Choose 5% level of significance).
24. Explain the chi-square test of independence of attributes. Hence derive the expression for chi-square for a 2×2 contingency table.

