Reg. No. :
Name: \qquad

M 10086

IV Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./B.S.W. (CCSS - Regular) Degree Examination, March 2011 MATHEMATICS (Core Course)
 4B04 MAT - Calculus

Time : 3 Hours
Max. Weightage : 30
T. Fill in the blanks :
(W-1)
a) \qquad is an example of a function which is continuous on $[0,1]$
b) The $\mathrm{n}^{\text {th }}$ derivative of e^{ax} is \qquad
c) $\lim _{x \rightarrow 0} 4 x^{2}+3 x+\frac{1}{2}$ is \qquad
d) \qquad is an example of a function which is not differentiable.
2. a) $\int e^{a x} d x=$ \qquad
b) $\int\left(3 t^{2}+t / 2\right) d t=$ \qquad
c) $\int \sin (3 x+5) d x=$ \qquad
d) $\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=$ \qquad
Write any five from the following (Weightage 1 each) :
3. Find :
a) $\lim _{y \rightarrow-5} \frac{y^{2}}{5-y}$ and
b) $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x+3}-2}$.
4. Define right-hand limit.

> P.T.O.
5. Mention the points to find the tangents to the curve $y=f(x)$ at $\left(x_{0}, y_{0}\right)$.
6. Show that if f has a derivative at $\mathrm{x}=\mathrm{c}$, then f is continuous at $\mathrm{x}=\mathrm{c}$.
7. If $y=\sqrt{\theta+3} \sin \theta$, find $\frac{d y}{d \theta}$ using logarithmic differentiation.
8. Evaluate the interval $\int 8 e^{(x+1)} d x$.
9. Solve the initial value problem :

$$
\frac{d^{2} y}{d x^{2}}=2 e^{-x}, y(0)=1 \text { and } y^{\prime}(0)=0
$$

10. Evaluate $\lim _{\theta \rightarrow 0} \frac{3^{\sin \theta}-1}{\theta}$.

Write any seven from the following (weightage 2 each).
11. Find $\sin \left[\sin ^{-1}(-1 / 2)+\cos ^{-1}(-1 / 2)\right]$.
12. Evaluate $\int \frac{d y}{y^{2}-2 y+5}$.
13. Show that if u is a differentiable function of x whose values are greater than 1 , then $\frac{d}{d x}\left(\cosh ^{-1} \mathrm{x}\right)=\frac{1}{\sqrt{\mathrm{u}^{2}-1}} \frac{\mathrm{dy}}{\mathrm{dx}}$.
14. Find the $n^{\text {th }}$ derivative of $\sin ^{5} x \cos ^{4} x$.
15. If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$ prove that $\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
16. Find the absolute extreme values of $g(t)=8 t-t^{4}$ on $[-2,1]$.
17. Suppose that f is continuous on $[a, b]$ and differentiable on (a, b). If $f^{\prime}<0$ at each point of (a, b), then show that f decreases on $[\mathrm{a}, \mathrm{b}]$.
18. Replace the polar equation $r=4 \csc \theta$ by equivalent Cartesian equation.
19. Find the radius of curvature at ' t ' on the curve $x=6 t^{2}-3 t^{4}, y=8 t^{3}$.
20. Graph the integrand and use area to evaluate the integral $\int_{1 / 2}^{3 / 2}(-2 x+4) d x$.

Write any three from the following (weightage 3 each).
21. State and prove the fundamental theorem of calculus, part I.
22. Prove that
i) $\beta(m, n)=\beta(m, n+1)+\beta(m+1, n)$
ii) $\Gamma 1 / 2=\sqrt{\pi}$.
23. Using Simpson's rule with $\mathrm{n}=4$ to approximate $\int_{-1}^{1}\left(\mathrm{t}^{3}+1\right) \mathrm{dt}$.
24. i) Find the areas of the regions enclosed by the curves $y=\sin (\pi x / 2)$ and $y=x$.
ii) Find the volume of the solids generated by revolving the regions bounded by the curve $y=2 \sqrt{x}, y=-2, x=0$ about the x-axis.
25. Graph the function $\mathrm{y}=\frac{\mathrm{x}^{3}+1}{\mathrm{x}}$.

