	SCO ARTS AND SCIENCE CO	v M 10086
Reg. No. :	BSC BSC	
Name :	AVADOLOGONUS * AVADOLOGONUS	
IV Semester B.A./B.Sc./B.	Com./B.B.A./B.B.A. T.T.M./B.B.)	M./B.C.A./B.S.W.
(CCSS – Regu	lar) Degree Examination, March	1 2011

MATHEMATICS (Core Course) 4B04 MAT – Calculus

Time: 3 Hours

Max. Weightage : 30

T. Fill in the blanks :

(W - 1)

(W - 1)

- a) _____ is an example of a function which is continuous on [0, 1]
- b)/The nth derivative of e^{ax} is _____
- c) $\lim_{x \to 0} 4x^2 + 3x + \frac{1}{2}$ is _____
- d) _____ is an example of a function which is not differentiable.
- 2. a) $\int e^{ax} dx =$ _____
 - b) $\int (3t^2 + t/2) dt =$ _____
- $c) \int \sin (3x+5) \, dx =$
 - d) $\sum_{k=1}^{n} k =$ _____

Write any five from the following (Weightage 1 each) :

3. Find :

a)
$$\lim_{y \to -5} \frac{y^2}{5-y}$$
 and b) $\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$

4. Define right-hand limit.

M 10086

- 5. Mention the points to find the tangents to the curve y = f(x) at (x_0, y_0) .
- 6. Show that if f has a derivative at x = c, then f is continuous at x = c.
- 7. If $y = \sqrt{\theta + 3} \sin \theta$, find $\frac{dy}{d\theta}$ using logarithmic differentiation.
- 8. Evaluate the interval $\int 8e^{(x+1)} dx$.

9. Solve the initial value problem :

$$\frac{d^2y}{dx^2} = 2e^{-x}$$
, $y(0) = 1$ and $y'(0) = 0$.

10. Evaluate $\lim_{\theta \to 0} \frac{3^{\sin \theta} - 1}{\theta}$.

Write any seven from the following (weightage 2 each).

- 11. Find $\sin \left[\sin^{-1} \left(-\frac{1}{2} \right) + \cos^{-1} \left(-\frac{1}{2} \right) \right]$.
- 12. Evaluate $\int \frac{dy}{y^2 2y + 5}$.
- 13. Show that if u is a differentiable function of x whose values are greater than 1,

then
$$\frac{\mathrm{d}}{\mathrm{dx}} \left(\cosh^{-1} x \right) = \frac{1}{\sqrt{u^2 - 1}} \frac{\mathrm{dy}}{\mathrm{dx}}.$$

14. Find the nth derivative of $\sin^5 x \cos^4 x$.

15. If
$$y = (x + \sqrt{1 + x^2})^m$$
 prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$.

- 16. Find the absolute extreme values of $g(t) = 8t t^4$ on [-2, 1].
- 17. Suppose that f is continuous on [a, b] and differentiable on (a, b). If f' < 0 at each point of (a, b), then show that f decreases on [a, b].
- 18. Replace the polar equation $r = 4 \csc \theta$ by equivalent Cartesian equation.

19. Find the radius of curvature at 't' on the curve $x = 6t^2 - 3t^4$, $y = 8t^3$.

20. Graph the integrand and use area to evaluate the integral $\int_{\frac{1}{2}}^{\frac{3}{2}} (-2x+4) dx$.

Write any three from the following (weightage 3 each).

- 21. State and prove the fundamental theorem of calculus, part I.
- 22. Prove that

i) $\beta(m,n) = \beta(m, n+1) + \beta(m+1, n)$

- ii) $\Gamma \frac{1}{2} = \sqrt{\pi}$.
- 23. Using Simpson's rule with n = 4 to approximate $\int_{1}^{1} (t^3 + 1) dt$.
- 24. i) Find the areas of the regions enclosed by the curves $y = \sin(\pi x/2)$ and y = x.
 - ii) Find the volume of the solids generated by revolving the regions bounded by the curve $y = 2\sqrt{x}$, y = -2, x = 0 about the x-axis.
- 25. Graph the function $y = \frac{x^3 + 1}{x}$.