Reg. No.: \qquad
Name: \qquad

II Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.)
 Examination, May 2014 CORE COURSE IN MATHEMATICS 2B02 MAT : Foundations of Higher Mathematics

Time: 3 Hours
Max. Weightage : 30

1. Fill in the blanks :
a) The number of terms in the expansion of $(1-x)^{-1}$ is \qquad
b) $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots=$ \qquad
c) The $n^{\text {th }}$ term of the series $\frac{2.3}{3!}+\frac{3.5}{4!}+\frac{4.7}{5!}+\ldots$ is \qquad
d) $\lim _{n \rightarrow \infty}(1-1 / n)^{n}=$ \qquad (Weightage : 1)
2. Fill in the blanks :
a) The dual of $(A \cap U) \cap\left(\phi \cup A^{\prime}\right)=\phi$ is \qquad
b) Consider the relation defined by $x^{2}+y^{2}=16$, then graph of the equation is a
c) If $A=\{1,2\}, B=\{a, b, c\}$ and $c=\{c, d\}$, then $(A \times B) \cap(A \times C)$ is \qquad
d) If $R=\left\{(x, y) / x \in \mathbb{R}, y \in \mathbb{R}, 4 x^{2}+9 y^{2}=36\right\}$, then $R^{-1}=$ \qquad (Weightage : 1)

Answer any five from the following (Weightage 1 each) :
3. Sum the series $1+\frac{1}{4}+\frac{1.4}{4.8}+\frac{1 \cdot 4.7}{4.8 .12}+\ldots$.
4. Prove that $\log 2-\frac{(\log 2)^{2}}{2!}+\frac{(\log 3)^{3}}{3!}=\ldots=\frac{1}{2}$.
5. Prove that $(B \cap C) \cup A=(B \cup A) \cap(C \cup A)$.
6. Find all partitions of $S=\{1,2,3\}$.
7. If \sim is a relation on the set of natural numbers defined by $(a, b) \sim(c, d)$ if and only $\mathrm{ad}=\mathrm{bc}$, then prove that ' \sim ' is an equivalence relation.
8. If $R=\{(1,2),(2,3),(3,3)\}$ is a relation defined on a set A, find R^{2} and R^{3}.
9. If $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ is ordered by the following diagram, insert the correct symbol <, > or II between each pair of elements.

i) a e
ii) be
iii) d....a
iv) c.... d
10. If R is a relation defined on the set of natural numbers given by $R=\{(x, y) / x \in N, y \in N, 2 x+y=10\}$, find
i) the domain of R
ii) the range of R
iii) R^{-1}.
(Weightage $5 \times 1=5$)
Answer any seven from the following (Weightage 2 each) :
11. If a relation R is transitive prove that its inverse is also transitive.
12. If f and g are function defined on the real numbers given by
$f(x)=x^{2}+2 x-3$ and $g(x)=3 x-4$, find $f \circ g$ and $g \circ f$.
13. Iff: $A \rightarrow B$ is one-to-one and $g: B \rightarrow C$ is also one-to-one, prove that $g \circ f: A \rightarrow C$ is one-to-one.
14. If $f: A \rightarrow B$ and $g: B \rightarrow C$ have inverse functions $f^{-1}: B \rightarrow A$ and $g^{-1}: C \rightarrow B$, show that g of has an inverse function which is $f^{-1} \circ g^{-1}: C \rightarrow A$.
15. Prove that $f: A \rightarrow B$ is invertible if and only if f is bijective.
16. If f is a one-to-one and onto function defined on real numbers by $f(x)=2 x-3$, find a formula that defines the inverse function f^{-1}.
17. If $B=\{2,3,4,5,6,8,9,10\}$ is ordered by " x is a multiple of y ". Find
a) all maximal elements of B,
b) all minimal elements of B and
c) does B have a first or last element ?
18. If L is a complemented lattice with unique complements, then show that the join of irreducible elements of L other than zero are its atoms.
19. If α, β, γ are the roots of the equation $x^{2}+a x-b=0$, find the value of $\frac{\alpha}{\beta \gamma}+\frac{\beta}{\gamma \alpha}+\frac{\gamma}{\alpha \beta}$.
20. Transform the equation $25 x^{4}+5 x^{3}-7 x^{2}+1=0$ into another with integral co-efficients and the leading co-efficient unity.
(Weightage $7 \times 2=14$)
Answer any three questions from the following (Weightage 3 each) :
21. If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$, find the equation whose roots are

$$
\alpha+\frac{1}{\beta \gamma}, \beta+\frac{1}{\gamma \alpha}, \gamma+\frac{1}{\alpha \beta} .
$$

22. Prove that $\sum_{n=0}^{\infty} \frac{5 n+1}{(2 n+1)!}=\frac{e}{2}+\frac{2}{e}$.
23. Show that $\frac{1}{2 \cdot 3.4}+\frac{1}{4.5 \cdot 6}+\frac{1}{6.7 .8}+\ldots=\frac{3}{4}-\log 2$.
24. Solve the equation $4 x^{3}-24 x^{2}+23 x+18=0$ whose roots are in A.P.
25. Solve by the equation $x^{3}-9 x+28=0$ by Cardan's method. (Weightage : $3 \times 3=9$)
