Reg. No. : \qquad

LIBRARY

Name : \qquad
II Semester B.A./B.Sc./B.Com./B.B.A./B.B.A.T.T.M./B.B.M./B.C.A./B.S.W. Degree (CCSS - Reg./Supple./Improv.) Examination, April 2012 CORE COURSE IN MATHEMATICS

2B02 MAT : Foundations of Higher Mathematics

Time: 3 Hours
Max. Wightage : 30

1. Fill in the blanks :
a) $1+2 x+3 x^{2}+4 x^{3}+\ldots \ldots=$ \qquad
b) The number of terms in the expansion of $(1-x)^{-1}=$ \qquad
c) The n-th term of the series $\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{3.7}+\ldots=$ \qquad
d) $\lim _{n \rightarrow \infty}(1-1 / n)^{n}=$ \qquad
2. Fill in the blanks :
a) The dual of $A \cup\left(A^{\prime} \cap B\right)=A \cup B$ is \qquad
b) Consider the relation defined by $y^{2}=16 x$, then the graph of the equation is
\qquad
c) If R is the relation in the natural numbers $N=\{1,2,3, \ldots\}$ defined by the open sentence " x divides y ", then $R=$ \qquad
d) If $A=\{a, b\}, B=\{2,3\}$ and $C=\{3,4\}$, then $(A \times B) \cap(A \times C)=$ \qquad

Answer any five from the following :
(Weightage 1 each)
3. Sum the series $1+\frac{1}{5}+\frac{1.4}{5 \cdot 10}+\frac{1 \cdot 4.7}{5 \cdot 10.15}+$. \qquad
4. Sum the series $\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{3.7}+\ldots \ldots$
5. If $A \cup B=U$, prove that $A^{\prime} \subset B$.
6. Find all the partitions of $S=\{1,2,3,4\}$.
7. If R is a relation defined on the set of natural numbers and R is given by (a, b) is related to (c, d) if and only $a+d=b+c$, prove that R is an equivalence relation.
8. If A, B, C are any three sets such that $A C B$ and $C C D$, then prove that $(A \times C) \subset(B \times D)$.
9. If the relation in N defined by ' x divides y ' is a partial order, the insert the correct symbol <, > or || between each pair of numbers.
a) 318
b) 16 26
c) 8 2
d) 5 20 .
10. Define lattice.
(Weightage 2 each)
Answer any seven from the following :
11. Each of the following open sentences defines a relation R in the natural number N. State whether or not each relation is transitive.
a) x is less than or equal to y.
b) x divides y,
c) $x+y=10$.
12. If the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are defined by $f(x)=2 x+1$ and $g(x)=x^{2}-2$, find gof and fog.
13. If $f: A \rightarrow B$ and $g: B \rightarrow C$ prove the following:
a) If gof is one-to-one, then f is one-to-one
b) If gof is onto, then g is onto.
14. a) If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ and $\mathrm{h}: \mathrm{C} \rightarrow \mathrm{D}$ are functions, prove that ho(gof) $=(\mathrm{hog}$)of.
b) Can a constant function be an onto function?
15. If $f: A \rightarrow B$ is an onto function and $g: B \rightarrow C$ is also onto, prove that gof is also onto.
16. If $A=\{2,3,4, \ldots\}$ is ordered by " x divides y ", then find
a) All minimal elements and
b) All maximal elements.
17. If L is a finite complemented distributive lattice then show that every element a in L is a join of a unique set of atoms.
18. Transform the equation $25 x^{4}+5 x^{3}-7 x^{2}+1=0$ into another with integral co-efficients and the leading co-efficient unity.
19. Solve the equation $x^{4}+x^{3}-33 x^{2}+61 x-14=0$, given that $2+\sqrt{3}$ is a root.
20. If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x=0$, find the value of
a) $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\alpha \gamma}$ and
b) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(Weightage $7 \times 2=14$)
Answer any three from the following :
(Weightage 3 each)
21. If α, β, γ are the roots of $x^{3}+q x+r=0$ find the equation whose roots are $(\beta-\gamma)^{2},(\gamma-\alpha)^{2},(\alpha-\beta)^{2}$.
22. Show that $\frac{1^{2} \cdot 2^{2}}{1!}+\frac{2^{2} \cdot 3^{2}}{2!}+\frac{3^{2} \cdot 4^{2}}{3!}+\ldots=27 e$.
23. Show that $\frac{1}{2.3 .4}+\frac{1}{4.5 .6}+\frac{1}{6.7 .8}+\ldots=\frac{3}{4}-\log 2$.
24. Find the sum of the fourth powers of the roots of the equation $x^{4}-5 x^{3}+x-1=0$.
25. Solve by Gardan's method : $x^{3}-9 x+28=0$.
(Weightage $3 \times 3=9$)

