Reg. No. : $\qquad$
Name : $\qquad$

## PART-A

Answer all questions :
I. Fill in the blanks :

1. A single elementary unit of information representing an attribute of an entity is called $\qquad$
2. Example for a linear data structure is $\qquad$
3. Complexity of a linear search algorithm is $\qquad$
4. FIFO stands for the data structure $\qquad$ (Weightage 1)
II. 5. Example for a static data structure is $\qquad$
5. The pointer of the last node in a linked list is $\qquad$
6. The header list where the last node contains the null pointer is called a
7. In a two way linked list, the pointer field BACK contains $\qquad$ (Weightage 1)
PART-B

Answer any six from the following :
(Weightage 1 each)
9. Define data structure.
10. What do you mean by queue?
11. What do you mean by binary search?
12. Explain the term algorithm.

## M 850

13. What is global variable?
14. Define linked list.
15. What do you mean by overflow in a linked list?
16. Explain header linked list.
17. Write a note on two way list.
18. What is sorting?
(Weightage : $6 \times 1=6$ )

## PART-C

Answer any four from the following :
(Weightage 2 each)
19. Write a note on records.
20. Explain different data structure operations.
21. Write a note on subalgorithms.
22. Write an algorithm to find the roots of a quadratic equation.
23. Write an algorithm for traversing a linked list.
24. Write a note on garbage collection in linked list.
25. What are the advantages of two-way linked lists over one-way linked list.
26. Write an algorithm to find the number of elements in a linked list. (Weightage : $4 \times 2=8$ )
PART-D

Answer any one from the following :
(Weightage 4 each)
27. Explain control structures with details.
28. Write a note on trees. Express the algebraic expression $(2 x+y)(a-7 b)^{3}$ as a tree.
29. Write an algorithm which deletes the last node from a list.

