eg. No. : \qquad
ame : \qquad
III Semester B.A./B.Sc./B.Com./B.B.A./B.B.A. T.T.M./B.B.M./B.C.A./
B.S.W./B.A. Afsal-UI-Ulama Degree (CCSS Reg./Supple./Improv.) Examination, November 2012 COMPLEMENTARY COURSE IN MATHEMATICS (For BCA) 3CO3 MAT (BCA) : Probability Distributions and Statistical Inference ime : 3 Hours

Answer all questions. Weightage for a bunch of four questions is 1.

1. Fill in the blanks :
a) Let Ω be the sample space, then probability of Ω is \qquad
b) What is the variance of a Poisson distribution with parameter λ ?
c) In statistical testing. Rejecting Ho when Ho is false is called \qquad of the test.
d) Write the test statistic for testing population mean when population variance σ^{2} is known
e) If two variables are perfectly positive correlated then the value of correlation coefficient is \qquad
f) Geometric mean of regression coefficient is \qquad
g) What is the value of skewness $\left(\beta_{1}\right)$ for the normal distribution?
h) Row sum of a trancision probability matrix is \qquad

Answer any 6 questions (Weightage 1 each).
2. Derive the mean of a Poisson distribution.
3. For a Binomial random variable x with parameters $n=10$ and $p=1 / 3$
Find

1) $P(X=0)$
2) $P(X>9)$.

||||||||||||||||||||||||||||

4. Define Type I and Type II errors in testing of hypothesis.
5. What are the properties of a normal curve?
6. What is a scatter diagram ?
7. What are the assumptions of t-test ?
8. What are the postulates of Poisson Process ?
9. What are the classification of stochastic process ?
10. Define Birth and Death process.

Answer any 7 questions (Weightage 2 each).
11. Let x is a normal variate with mean 30 and S.D.S. Find

1) $P(26 \leq X \leq 40)$
2) $P(X \geq 45)$
12. Write short notes on:
a) Normal random variable
b) Most powerful test
13. Explain the test procedure for testing single mean when S.D is unknown $(n<30)$.
14. Test the hypothesis that $\sigma=10$ vs $\sigma>10$, given that sample S.D $S=15$ for a_{22} sample of size 30 from a normal population $(\alpha=0.05)$.
15. Sample of two type of light bulbs were tested for length of life and the following data were obtained.

> Type I Type II

Sample No.	8	7	24
Sample Mean	1234 hrs.	1036 hrs.	24
Sample S.D	36 hrs.	40 hrs.	

Test at 5% level, whether or not the avg. length of life are same.
16. Explain the method of least squares. Using method of least squares fit $y=a b^{x}$.
17. In a correlation analysis the following data are obtained $\mathrm{v}(\mathrm{x})=9$.
$8 x-10 y+66=0$ and $40 x-18 y=214$.
Find 1) Mean of X and Y
2) Correlation coefficient between X and Y.
8. What are the characteristics of a Queuing system ?
9. Consider a M.C $\left\{X_{n}\right\}$ with state space $\{0,1\}$ has Trancision probability matrix

$$
\mathrm{P}=\left[\begin{array}{ll}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right]
$$

Find 1) $P\left[x_{n}=1 / x_{n-1}=0\right]$
2) $P\left[X_{2}=1 / X_{0}=1\right]$
(Wt. 6x1:

1. Suppose that the customers arrives at a Poisson rate of 1 per every 12 minutes and that the service time is exponential at a rate of one service per 8 minutes.
1) What is the average no. of customers in the system ?
2) The avergage waiting time in the system.
21. Find the rank correlation coefficient for the following data.

$\mathbf{X}:$	6	5	3	10	2	4	9	7	8
$\mathbf{Y}:$	5	8	4	7	10	2	1	6	9

Answer any 2 questions. (Weightage 4 each).
$=15$ for a_{22}. Define $M / M /$ queue and derive the steady state probability
23. Let X and Y are two variables and
following

$\mathrm{X}:$	65	66	67	67	68	69	70
$\mathbf{Y}:$	67	68	65	68	72	72	69
71							

Find the regression lines of X on Y and Y on X.
24. From the data given below using Chi-square test check whether there exist any distinction is made in the appointment on the basis of sex. (use $\alpha=0.05$).
it $y=a b^{x}$.

Sex	Employed	Not Employed	Total
Male	1480	5720	7200
Female	120	680	800
Total	1600	6400	8000

